Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách : AM - GM :
\(VT=3-\left(\frac{2ab^2}{2ab^2+1}+\frac{2bc^2}{2bc^2+1}+\frac{2ca^2}{2ca^2+1}\right)\left(1\right)\)
Áp dụng BĐT AM - GM :
\(\frac{2ab^2}{2ab^2+1}+\frac{2bc^2}{2bc^2+1}+\frac{2ca^2}{2ca^2+1}=\frac{2ab^2}{ab^2+ab^2+1}+\frac{2bc^2}{bc^2+bc^2+1}+\frac{2ca^2}{ca^2+ca^2+1}\)
\(\le\frac{2ab^2}{3\sqrt[3]{a^2b^4}}+\frac{2bc^2}{3\sqrt[3]{b^2c^4}}+\frac{2ca^2}{3\sqrt[3]{c^aa^4}}=\frac{2}{3}\left(\sqrt[3]{ab^2}+\sqrt[3]{bc^2}+\sqrt[3]{ca^2}\right)\)
\(\le\frac{2}{3}\left(\frac{a+b+b}{3}+\frac{b+c+c}{3}+\frac{c+a+a}{3}\right)=\frac{2}{3}\left(a+b+c\right)=2\left(2\right)\)
Từ (1) và (2) \(\Rightarrow VT\ge3-2=1\left(đpcm\right)\)
Lời giải:
Ta thấy:
\(\text{VT}=\frac{c^2}{2ab^2c^2+c^2}+\frac{a^2}{2bc^2a^2+a^2}+\frac{b^2}{2ca^2b^2+b^2}\)
Áp dụng BĐT Bunhiacopxky:
\(\text{VT}(2ab^2c^2+c^2+2bc^2a^2+a^2+2ca^2b^2+b^2)\geq (c+a+b)^2\)
\(\Leftrightarrow \text{VT}\geq \frac{(a+b+c)^2}{2abc(ab+bc+ac)+a^2+b^2+c^2}(*)\)
Áp dụng BĐT Am-GM:
\(3=a+b+c\geq 3\sqrt[3]{abc}\Rightarrow abc\leq 1\)
\(\Rightarrow 2abc(ab+bc+ac)\leq 2(ab+bc+ac)\)
\(\Rightarrow \frac{(a+b+c)^2}{2abc(ab+bc+ac)+a^2+b^2+c^2}\geq \frac{(a+b+c)^2}{2(ab+bc+ac)+a^2+b^2+c^2}=1(**)\)
Từ \((*); (**)\Rightarrow \text{VT}\geq 1\)
Ta có đpcm. Dấu "=" xảy ra khi $a=b=c=1$
Cách khác bằng AM-GM:
\(\text{VT}=3-\left(\frac{2ab^2}{2ab^2+1}+\frac{2bc^2}{2bc^2+1}+\frac{2ca^2}{2ca^2+1}\right)(1)\)
Áp dụng BĐT AM-GM:
\(\frac{2ab^2}{2ab^2+1}+\frac{2bc^2}{2bc^2+1}+\frac{2ca^2}{2ca^2+1}=\frac{2ab^2}{ab^2+ab^2+1}+\frac{2bc^2}{bc^2+bc^2+1}+\frac{2ca^2}{ca^2+ca^2+1}\)
\(\leq \frac{2ab^2}{3\sqrt[3]{a^2b^4}}+\frac{2bc^2}{3\sqrt[3]{b^2c^4}}+\frac{2ca^2}{3\sqrt[3]{c^2a^4}}=\frac{2}{3}(\sqrt[3]{ab^2}+\sqrt[3]{bc^2}+\sqrt[3]{ca^2})\)
\(\leq \frac{2}{3}\left(\frac{a+b+b}{3}+\frac{b+c+c}{3}+\frac{c+a+a}{3}\right)=\frac{2}{3}(a+b+c)=2(2)\)
Từ \((1);(2)\Rightarrow \text{VT}\geq 3-2=1\) (đpcm)
cho 3 so duong a,b,c tm \(a+b+c=3\)
cmr \(\frac{1}{1+2ab^2}+\frac{1}{1+2bc^2}+\frac{1}{1+2ca^2}\ge1\)
Ta có:
\(3=a+b+c\ge3\sqrt[3]{abc}\)
\(\Leftrightarrow abc\le1\)
Từ đó ta có:
\(\frac{1}{1+2ab^2}+\frac{1}{1+2bc^2}+\frac{1}{1+2ca^2}\)
\(\ge\frac{1}{1+\frac{2b}{c}}+\frac{1}{1+\frac{2c}{a}}+\frac{1}{1+\frac{2a}{b}}\)
\(=\frac{c}{c+2b}+\frac{a}{a+2c}+\frac{b}{b+2a}\)
\(=\frac{c^2}{c^2+2bc}+\frac{a^2}{a^2+2ca}+\frac{b^2}{b^2+2ab}\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)
Bạn tham khảo câu trả lời tại đây:
https://olm.vn/hoi-dap/detail/63983977591.html
Câu hỏi của Tran Toan - Toán lớp 8 - Học toán với OnlineMath
Đặt \(P=\frac{a}{a+2bc}+\frac{b}{b+2ca}+\frac{c}{c+2ab}\)
\(\Leftrightarrow P=\frac{a^2}{a^2+2bca}+\frac{b^2}{b^2+2cab}+\frac{c^2}{c^2+2abc}\)
Áp dụng BĐT Cauchy-schwarz ta có: ( link c/m Cauchy-schwarz: Xem câu hỏi )
\(P\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+6abc}=\frac{9}{a^2+b^2+c^2+6abc}\)( \(a+b+c=3\))
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)
Ta có: \(a+b+c=3\)
Áp dụng BĐT AM-GM ta có:
\(a+b+c\ge3\sqrt[3]{abc}\)
\(\Leftrightarrow3\ge3\sqrt[3]{abc}\)
\(\Leftrightarrow1\ge\sqrt[3]{abc}\)
\(\Leftrightarrow1\ge abc\)
\(\Leftrightarrow a^2b^2c^2\ge a^3b^3c^3\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)
Áp dụng BĐT AM-GM ta có:
\(ab+bc+ca\ge3.\sqrt[3]{a^2b^2c^2}\ge3.\sqrt[3]{a^3b^3c^3}=3abc\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)
\(\Rightarrow P\ge\frac{9}{a^2+b^2+c^2+2ab+2bc+2ca}=\frac{9}{\left(a+b+c\right)^2}=\frac{9}{9}=1\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)
đpcm
1. BĐT ban đầu
<=> \(\left(\frac{1}{3}-\frac{b}{a+3b}\right)+\left(\frac{1}{3}-\frac{c}{b+3c}\right)+\left(\frac{1}{3}-\frac{a}{c+3a}\right)\ge\frac{1}{4}\)
<=>\(\frac{a}{a+3b}+\frac{b}{b+3c}+\frac{c}{c+3a}\ge\frac{3}{4}\)
<=> \(\frac{a^2}{a^2+3ab}+\frac{b^2}{b^2+3bc}+\frac{c^2}{c^2+3ac}\ge\frac{3}{4}\)
Áp dụng BĐT buniacoxki dang phân thức
=> BĐT cần CM
<=> \(\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+3\left(ab+bc+ac\right)}\ge\frac{3}{4}\)
<=> \(a^2+b^2+c^2\ge ab+bc+ac\)luôn đúng
=> BĐT được CM
2) \(a+b+c\le ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)\(\Leftrightarrow\)\(\left(a+b+c\right)^2-3\left(a+b+c\right)\ge0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)\left(a+b+c-3\right)\ge0\)\(\Leftrightarrow\)\(a+b+c\ge3\)
ko mất tính tổng quát giả sử \(a\ge b\ge c\)
Có: \(3\le a+b+c\le ab+bc+ca\le3a^2\)\(\Leftrightarrow\)\(3a^2\ge3\)\(\Leftrightarrow\)\(a\ge1\)
=> \(\frac{1}{1+a+b}+\frac{1}{1+b+c}+\frac{1}{1+c+a}\le\frac{3}{1+2a}\le1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=1\)
Ta có: \(a^2+2b^2+3=a^2+b^2+b^2+1+2\)
\(a^2+2b^2+3\ge2\left(ab+b+1\right)\)
\(\Rightarrow\frac{1}{a^2+2b^2+3}\le\frac{1}{2\left(ab+b+1\right)}\)
Tương tự:\(\frac{1}{b^2+2c^2+3}\le\frac{1}{2\left(bc+c+1\right)}\);\(\frac{1}{c^2+2a^2+3}\le\frac{1}{2\left(ca+a+1\right)}\)
\(\Rightarrow VT\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}\right)\)
\(\Rightarrow VT\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{abc}{bc+b+abc}+\frac{b}{abc+ab+b}\right)\)
\(\Rightarrow VT\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{ab}{ab+b+1}+\frac{b}{ab+b+1}\right)\)
\(\Rightarrow VT\le\frac{1}{2}.\frac{ab+b+1}{ab+b+1}=\frac{1}{2}\)
Dấu "=" xảy ra\(\Leftrightarrow a=b=c=1\)
Sửa lại \(\frac{a^2}{a^2+2}+\frac{b^2}{b^2+2}+\frac{c^2}{c^2+2}\ge1\) rồi c/m BĐT phụ
\(\frac{a^2}{a^2+2}\ge\frac{4}{9}a-\frac{1}{9}\) bằng cách quy đồng, phân tích
Sau đó tương tự rồi cộng theo vế là ra
#Tks Vũ...Châu đã nhắc nhé
Từ \(a+b+c\ge3\sqrt[3]{abc}\)\(\Rightarrow abc\le1\)
Khi đó ta có BĐT
\(\frac{a}{a+2bc}+\frac{b}{b+2ac}+\frac{c}{c+2ab}\ge1\)
\(\Leftrightarrow\frac{a^2}{a+2}+\frac{b^2}{b+2}+\frac{c^2}{c+2}\ge1\)
Áp dụng BĐT Cauchy-SChwarz dạng ENGel ta có;
\(VT=\frac{a^2}{a+2}+\frac{b^2}{b+2}+\frac{c^2}{c+2}\)
\(\ge\frac{\left(a+b+c\right)^2}{a+b+c+6}=1=VP\)
KHi \(a=b=c=1\)