\(\left(a+b+c\right)^2=a^2+b^2+c^2.\) C/m \(\frac{a^2}{a^2+2bc}+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2019

tìm trên câu hỏi tương tự bạn sẽ có lời giải của Nguyễn Việt Lâm

28 tháng 10 2019

https://hoc24.vn/hoi-dap/question/794424.html

27 tháng 5 2018

Nhầm, bỏ bớt 1 cái 1/3 đi

27 tháng 5 2018

tích đi rồi Pain làm

31 tháng 10 2017

đúng rồi

1 tháng 11 2017

 chó điên

16 tháng 10 2017

theo bài ra ta có: \(c^2+2ab-2bc-2ca=0.\)

\(\Rightarrow2\left(c^2+ab-bc-ca\right)=c^2\)

\(\Rightarrow2\left(a-c\right)\left(b-c\right)=c^2\)

Mặt khác: \(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{2a^2-2ac+c^2}{2b^2-2bc+c^2}=\frac{2a\left(a-c\right)+2\left(a-c\right)\left(b-c\right)}{2b\left(b-c\right)+2\left(a-c\right)\left(b-c\right)}\)

                                                                               \(=\frac{\left(a-c\right)\left(a+b-c\right)}{\left(b-c\right)\left(b+a-c\right)}=\frac{a-c}{b-c}\) => đpcm

11 tháng 7 2017

ÁP dụng BĐT AM-Gm  ta có: 

\(Σ\frac{a^2}{\left(ab+2\right)\left(2ab+1\right)}\ge\frac{4}{9}\cdotΣ\frac{a^2}{\left(ab+1\right)^2}\)

ĐẶt \(a=\frac{x}{y};b=\frac{y}{z};c=\frac{z}{x}\) thì cần cm

\(Σ\frac{a^2}{\left(ab+1\right)^2}=Σ\left(\frac{xz}{y\left(x+z\right)}\right)^2\ge\frac{3}{4}\)

\(Σ\left(\frac{xz}{y\left(x+z\right)}\right)^2\ge\frac{1}{3}\left(\frac{xz}{y\left(x+z\right)}\right)^2\)

Theo C-S \(Σ\frac{xz}{y\left(x+z\right)}=\frac{\left(xz\right)^2}{xyz\left(x+z\right)}\ge\frac{\left(Σxy\right)^2}{2xy\left(Σx\right)}\ge\frac{3}{2}\)

\(\frac{1}{3}\cdot\left(Σ\frac{xz}{y\left(x+z\right)}\right)^2\ge\frac{1}{3}\cdot\frac{9}{4}=\frac{3}{4}\)

Đúng hay ta có ĐPCM xyar ra khi a=b=c=1

5 tháng 11 2016

Đặt \(\frac{b^2+c^2-a^2}{2bc}=A,\frac{c^2+a^2-b^2}{2ac}=B;\frac{a^2+b^2-c^2}{2ab}=C.\)

Theo giả thiết : \(A+B+C=1\)

Suy ra \(S=\left(A-1\right)+\left(B-1\right)+\left(C+1\right)=0\)

\(A-1=\frac{\left(b-c-a\right)\left(b-c+a\right)}{2bc};\)

\(B-1=\frac{\left(a-c-b\right)\left(a-c+b\right)}{2ac};\)

\(C+1=\frac{\left(a+b+c\right)\left(a+b-c\right)}{2ab}\)

\(S=\frac{a+b-c}{2abc}\left[c\left(a+b+c\right)+b\left(a-c-b\right)+a\left(b-c-a\right)\right]\)

\(S=0\Rightarrow\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)=0\)

Có 3 khả năng xảy ra :

TH1 : \(a+b-c=0\Rightarrow A-1=B-1=C+1=0\left(đpcm\right)\)

TH2 :

\(b+c-a=0\).Ta xét : \(A+1=B-1=C-1=0\left(đpcm\right)\)

TH3:

\(c+a-b=0\). Ta xét : \(S=\left(A-1\right)+\left(B+1\right)+\left(C-1\right)=0\)

\(\Rightarrow A-1=B+1=C-1=0\left(đpcm\right)\)