Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+xy+y^2+1=\left(x^2+xy+\frac{y^2}{4}\right)+\frac{3y^2}{4}+1=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+1>0\)
b)
\(-x^2+2x-6=-\left(x^2-2x+6\right)\)
\(=-\left(x^2-2x+1+5\right)=-\left(x+1\right)^2-6\)
vì \(\left(x-1\right)^2\ge0\)với mọi \(x\in R\)
nên \(-\left(x-1\right)^2\le0\)với mọi \(x\in R\)
do đó \(-\left(x-1\right)-5< 0\)với mọi \(x\in R\)
vậy \(-x^2+2x-6< 0\)với mọi \(x\in R\)
a) \(x^2+2x+7=x^2+2x+1+6\)
\(=\left(x+1\right)^2+6\)
vì \(\left(x+1\right)^2\ge0\)với mọi \(x\in R\)
nên \(\left(x+1\right)^2+6>0\)với mọi \(x\in R\)
vậy \(x^2+2x+7>0\)với mọi \(x\in R\)
\(=\left(x-y\right)\left(x+y\right)-7\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-7\right)\)
\(=100^2=10000\)