Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có : 1890 chia hết cho 7 => 1890^1930 chia hết cho 7
Áp dụng tính chất a^n + b^n chia hết cho a+b với mọi n lẻ và a,b thuộc N thì :
1945^1975 + 1 = 1945^1975 + 1^1975 chia hết cho 1945+1 = 1946
Mà 1946 chia hết cho 7 => 1945^1975+1 chia hết cho 7
=> a chia hết cho 7
Tk mk nha
1) a, Chứng minh a^5-a chia hết cho 5
b, Chứng minh a^7-a chia hết cho 7
có: \(1890^2\equiv0\left(mod7\right)\)
\(\Rightarrow\left(1890^2\right)^{965}\equiv0\left(mod7\right)\) (1)
Ta có: \(1945^2\equiv1\left(mod7\right)\)
\(\left(1945^2\right)^{987}\equiv1^{987}\equiv1\left(mod7\right)\)
\(\Rightarrow1945^{1975}\equiv1945^{1974}\cdot1945\equiv1\cdot6\equiv6\left(mod7\right)\) (2)
Từ (1), (2)
\(\Rightarrow1890^{1930}+1945^{1975}+1\equiv0+6+1\equiv7⋮7\left(đpcm\right)\)
\(x^2+xy+y^2+1=\left(x^2+xy+\frac{y^2}{4}\right)+\frac{3y^2}{4}+1=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+1>0\)
a) bài này xét chữ số tận cùng nhé
\(12^{2000}-2^{1000}=\left(2^2\right)^{1000}-\left(2^2\right)^{500}=4^{1000}-4^{500}=\left(...6\right)-\left(...6\right)=\left(...0\right)\) chia hết cho 10
=>122000-21000 chia hết cho 10 (đpcm)
b) chưa nghĩ ra :(