K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2016

\(\left(x+2\right)\left(2x^2-3x+4\right)-\left(x^2-1\right)\left(2x+1\right)\)

\(=\left[x.\left(2x^2-3x+4\right)+2.\left(2x^2-3x+4\right)\right]-\left[x.\left(2x+1\right)-1.\left(2x+1\right)\right]\)

\(=\left(2x^3-3x^2+4x+4x^2-6x+8\right)-\left(2x^3+x-2x-1\right)\)

\(=2x^3-3x^2+4x+4x^2-6x+8-2x^3-x+2x+1\)

\(=9\)

11 tháng 8 2016

mơn

6 tháng 6 2016

a/ \(=8x^3+2x^2-8x^3-8x^2-8x^3-2x+3=-8x^3-6x^2-2x+3\)

b/ \(=3x^2+12x-7x+20+2x^3-3x^2-2x^3-5x=20\)

Biểu thức A phụ thuộc vào x còn B thì không.

a: \(=5\left(4x^2-4x+1\right)+4\left(x^2+2x-3\right)-2\left(9x^2-30x+25\right)\)

\(=20x^2-20x+5+4x^2+8x-12-18x^2+60x-50\)

\(=6x^2+48x-57\)

b: \(=\left(2x^2+1\right)^2-4x^2-\left(2x^2+1\right)^2=-4x^2\)

c: \(=\left(9x-1+1-5x\right)^2=\left(4x\right)^2=16x^2\)

20 tháng 6 2018

\(\left(3x^2-2x+1\right)\left(x^2+2x+3\right)-4x\left(x^2-1\right)-3x^2\left(x^2+2\right)\)

\(=3x^4-2x^3+x^2+6x^3-4x^2+2x+9x^2-6x+3-4x^3+4x-3x^4-6x^2\)

\(=\left(3x^4-3x^4\right)-\left(2x^3-6x^3+4x^3\right)+\left(x^2-4x^2+9x^2-6x^2\right)+\left(2x-6x+4x\right)+3\)

\(=3\)

Vậy biểu thức trên không phụ thuộc vào biến.

20 tháng 6 2018

\(\left(3x^2-2x+1\right)\left(x^2+2x+3\right)-4x\left(x^2-1\right)-3x^2\left(x^2+2\right)\)

\(=3x^4+6x^3+9x^2-2x^3-4x^2-6x+x^2+2x+3-4x^3+4x-3x^4-6x^2\)

\(=\left(3x^4-3x^4\right)+\left(6x^3-2x^3-4x^3\right)+\left(9x^2-4x^2+x^2-6x^2\right)-\left(6x-2x-4x\right)+3\)

\(=0+0+0-0+3=3\)

25 tháng 9 2020

A = (x + 2)3 - (x - 2)3 - 6x(2x + 1)

   = x3 + 6x2 + 12x + 8 - (x3 - 6x2 + 12x - 8) - 12x2 - 6x

  = x3 + 6x2 + 12x + 8 - x3 + 6x2 - 12x + 8 - 12x2 - 6x

  = (x3 - x3) + (6x2 + 6x2 - 12x2) + (12x - 12x - 6x) + (8 + 8)

= -6x + 16

=> có phụ thuộc vào biến x

B = 8(x - 1)(x2 + x + 1) - (2x - 1)(4x2 + 2x + 1)

   = 8(x3 - 1) - (8x3 - 1) (sử dụng hằng đẳng thức thứ 6)

    = 8x3 - 8 - 8x3 + 1 = (8x3 - 8x3) + (-8 + 1) = -7

=> không phụ thuộc vào biến x

25 tháng 9 2020

\(A=\left(x+2\right)^3-\left(x-2\right)^3-6x\left(2x+1\right)\)

\(=x^3+6x^2+12x+8-x^3+6x^2-12x+8-12x^2-6x\)

\(=-6x+16\)

Vậy biểu thức A phụ thuộc vào biến x

\(B=8\left(x-1\right)\left(x^2+x+1\right)-\left(2x-1\right)\left(4x^2+2x+1\right)\)

\(=8x^3-8-8x^3+1\)

\(-7\)

Vậy biểu thức B không phụ thuộc vào biến x

16 tháng 9 2018

T ko biết làm, chỉ hỏi liên thiên thôi :)))

Hủ phải không???? OvO Dưa Trong Cúc

16 tháng 9 2018

- Ko lẽ t có đồg bọn =))

10 tháng 10 2019

mẹo của những câu này là: kết quả cuối cùng LUÔN LÀ HỆ SỐ TỰ DO

câu a ta thấy 3(x^2-8y^3+10) có 3x10 là hstd => 30

b:có hstd 1 ở (2x-1)(x^2+x-1) 25 ở bt(x-5)^2 và hstd 2 ở 2(x+1)(x^2-x+1) và 14 ở -7(x-2)

->hstd là 1+25+2+14=42

mấy cái tách thì khai triển hết ra rồi loại hết đi :v

nếu mình nhìn thiếu gì thì bạn bỏ qua cho mn nhé. đây chỉ là mẹo thôi

mn sắp thi r. chào b. chúc b học tốt

25 tháng 5 2022

\(\left(x-1\right)^3-\left(x+2\right)\left(x^2-2x+4\right)+3x^2-3x\\ =\left(x^3-3x^2+3x-1\right)-\left(x^3+8\right)+3x^2-3x\\ =x^3-3x^2+3x-1-x^3-8+3x^2-3x\\ =-9\)

Vậy biểu thức không phụ thuộc vào giá trị của biến

AH
Akai Haruma
Giáo viên
18 tháng 8 2019

Lời giải:

a)

\(x(2x+1)-x^2(x+3)+x^3-x+3=2x^2+x-x^3-2x^2+x^3-x+3\)

\(=3\) không phụ thuộc vào biến (đpcm)

b)

\(4(x-6)-x^2(2+3x)+x(5x-4)+3x^2(x-1)\)

\(=4x-24-2x^2-3x^3+5x^2-4x+3x^3-3x^2\)

\(=(4x-4x)-24+(-2x^2+5x^2-3x^2)+(-3x^3+3x^3)\)

\(=-24\) không phụ thuộc vào biến.

c)

\((x^2+2x+3)(3x^2-2x+1)-3x^2(x^2+2)-4x(x^2-1)\)

\(=(3x^4-2x^3+x^2+6x^3-4x^2+2x+9x^2-6x+3)-(3x^4+6x^2)-(4x^3-4x)\)

\(=(3x^4-3x^4)+(-2x^3+6x^3-4x^3)+(x^2-4x^2+9x^2-6x^2)+(2x-6x+4x)+3\)

\(=3\) không phụ thuộc vào biến (đpcm)