Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề sai bn nhé
Phải là Cho n thuộc N CMR n^2 chia hết cho 3 hoặc n^2 chia 3 dư 1
Đơn giản thôi:
Xét n=3k=> n^2=9k^2 chia hết cho 3
Xét n=3q+1=> n^2=9q^2+6q+1 chia 3 dư 1 do 9q^2 và 6q chia hết cho 3 và 1 chia 3 dư 1
Xét n=3p+2 => n^2=9p^2+6p+4 chia 3 dư 1 do 9p^2 và 6p chia hết cho 3 và 4 chia 3 dư 1
Vậy với mọi n thuộc N thì n^2 chia 3 dư 0 hoặc 1.
b) Có mn(m^2-n^2)
=mn(m-n)(m+n)
Nếu m hoặc n chia hết cho 3 thì xong luôn
Nếu m và n cùng dư khi chia cho 3 thì m-n chia hết cho 3
Nếu m và n khác dư khi chia cho 3 (lúc đó m,n ko chia hết cho 3) thì m+n chia hết cho 3
Vậy với mọi m,n thuộc N thì mn(m^2-n^2) chia hết cho 3
\(A=n\left(n+1\right)\left(n+2\right)\)
\(\text{a) }n;\text{ }n+1;\text{ }n+2\text{ là 3 số tự nhiên liên tiếp nên 1 trong 3 số chia hết cho 3.}\)
\(\Rightarrow A=n\left(n+1\right)\left(n+2\right)\text{ chia hết cho 3}\)
\(\text{b) Để A chia hết cho 15 thì A cần chia hết cho 5 (vì A luôn chia hết cho 3)}\)
\(\Rightarrow\text{1 trong 3 số }n;n+1;n+2\text{ phải chia hết cho 5.}\)
\(\Rightarrow n;n+1;n+2=5\text{ hoặc 10}\)
\(\Rightarrow n\in\left\{3;4;5;8;9\right\}\)
Ta có:
\(A=10^n+2=10...00\left(n\text{ chữ số 0}\right)+2.\)
\(=10...02\left(n-1\text{ chữ số 0}\right)\)
Mà theo dấu hiệu nhận biết chia hết cho 3 thì: 1+2 =3 chia hết cho 3
Vậy ....