K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2017

Ta có : 3n + 2 - 2n + 4 + 3n + 2n

= ( 3n + 2 + 3n ) - ( 2n + 4 - 2n )

= ( 3n . 32 + 3n . 1 ) - ( 2n . 24 - 2n . 1 )

= 3n ( 32 + 1 ) - [ 2n ( 24 - 1 ) ]

= 3n . 10 - 2n . 15

= 3n - 1 . 3 . 10 - 2n - 1 . 2 .15

= 3n - 1 . 30 - 2n - 1 . 30

Vì 30  chia hết cho 30

Nên 3n - 1 . 30 chia hết cho 30

Và 2n - 1 . 30 chia hết cho 30

Suy ra 3n - 1 . 30 - 2n - 1 . 30 chia hết cho 30

Hay 3n + 2 - 2n + 4 + 3n + 2n chia hết cho 30 ( đpcm )

27 tháng 3 2017

Mọi người tk mình đi mình đang bị âm nè!!!!!!

Ai tk mình mình tk lại nha !!!

1 tháng 5 2020

với n = 1 có : ( 1 + 1 ) chia hết cho 2

giả sử, với n = k thì ( k + 1 ) ( k + 2 ) ... 2k \(⋮\)2k

cần chứng minh đúng với n = k + 1

tức là ( k + 1 + 1 ) ( k + 1 + 2 ) ... 2 (k + 1 ) \(⋮\)2k+1

Ta có : ( k + 1 + 1 ) ( k + 1 + 2 ) ... 2 (k + 1 ) = ( k + 2 ) ( k + 3 ) ... 2k .2 ( k + 1 )

= 2 ( k + 1 ) ( k + 2 ) ... 2k \(⋮\)2.2k = 2k+1

vậy ta có đpcm

10 tháng 4 2017

\(3^{n+2}-2^{n+4}+3^n+2^n\)

\(\left(3^{n+2}+3^n\right)-\left(2^{n+4}-2^n\right)\)

\(\left(3^n.3^2+3^n\right)-\left(2^n.2^4-2^n\right)\)

\(3^n.\left(3^2+1\right)-2^n.\left(2^4-1\right)\)

\(3^n.10-2^n.15\)

=\(3^n.2.5-2^n.3.5\)

=\(5.\left(3^n.2-2^n.3\right)\)

=\(5.\left(3^{n-1}.6-2^{n-1}.6\right)\)

=\(5.6.\left(3^{n-1}-2^{n-1}\right)\)

=\(30.\left(3^{n-1}-2^{n-1}\right)\)

=>\(3^{n+2}-2^{n+4}+3^n+2^n\)chia hết cho 30 với mọi số nguyên dương n

8 tháng 4 2020

Mình ka người tốt 

17 tháng 8 2020

Ta có : 3n + 2 - 2n + 4 + 3n + 2n

= 3n(32 + 1) - 2n(24 - 1)

= 3n.10 - 2n.15

= 3n - 1.3.10 - 2n - 1.2.15

= 3n - 1.30 - 2n - 1.30

= 30(3n - 1 - 2n - 1\(⋮\)30 (đpcm)

17 tháng 8 2020

Câu a có rồi

b) Bg

Gọi số của đề bài là a   (a \(\inℕ^∗\))

Theo đề bài: a = 7x + 3, a = 17y + 12, a = 23z + 7  (x, y, z \(\inℕ\))

=> a + 39 = 7x + 3 + 39 = 7x + 42 = 7x + 7.6 = 7.(x + 6) \(⋮\)7

=> a + 39 = 17y + 12 + 39 = 17y + 51 = 17y + 17.3 = 17.(y + 3) \(⋮\)17

=> a + 39 = 23z + 7 + 39 = 23z + 46 = 23z + 23.2 = 23.(z + 2) \(⋮\)23

=> a + 39 \(⋮\)7; 17; 23

Ta có: 2737 = 7.17.23 (phân tích thừa số nguyên tố)

=> a + 39 \(⋮\)2737

=> a = 2737p - 39

=> a = 2737p - 2737 + 2698

=> a = 2737.(p - 1) + 2698

Vì 2698 < 2737

=> a chia 2737 dư 2698

Vậy số đó chia 2737 dư 2698

26 tháng 1 2016

kho....................wa..................troi.......................thi.....................ret.................lanh................wa..................tich............................ung.........................ho..............minh......................cho....................do....................lanh

20 tháng 2 2017

ngheeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

20 tháng 2 2017

3^n+2 - 2^n+4 + 3^n + 2^n

=>9.3^n - 16.2^n +3^n + 2^n

=>10.(3^n) -15.(2^n)                       =>30.(3^n-1) - 30(2^n-1)
=>30.(3^n-1 - 2^n-1)  chia hết cho 30

Tk nha!

22 tháng 7 2021

undefined

undefined

 

22 tháng 7 2021

thanks

25 tháng 5 2015

Ta có: 91 = 7.13 mà ƯCLN(7 ; 13) = 1 nên ta cần chứng minh A chia hết cho 7 và chia hết cho 13.
Đặt A = (25n – 18n) – (12n – 5n)
Vì (25n – 18n)(25 – 18)= 7 ; (12n – 5n) (12 – 5) = 7 nên A  chia hết cho 7
 A = (25n – 12n) – (18n – 5n)
Vì (25n – 12n)(25 – 12)= 13 ; (18n – 5n) (18 – 5) = 13 nên A chia hết cho 13
A vừa chia hết cho 7, vừa chia hết cho 13, mà (7 ; 13) = 1
Nên A chia hết cho BCNN(7 ; 13) hay A chia hết cho 91

22 tháng 10 2016

CMR với mọi số nguyên dương n đều có

5^n(5^n+1)-6^n(3^n+2^n) chia hết cho 91