Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Gọi phương trình đường thẳng cần tìm có dạng: y = ax + b
Vì đường thẳng đi qua A,B nên ta có hệ
\(\hept{\begin{cases}0=2a+b\\-2=b\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=-2\end{cases}}}\)
Vậy phương trình đường thẳng AB là:
\(y=x-2\)
b/ Ta chứng minh C thuộc đường AB
Ta thế tọa độ điểm C vào đường thẳng AB thì được
\(1=3-2\)(đúng)
Vậy C thuộc đường thẳng AB hay A,B,C thẳng hàng
y x O 1 3 C(3;1) A(2;0) B(0;-2) H
Kẻ CH⊥Ox
Ta có OB=\(\left|-2\right|=2\)
OA=\(\left|2\right|=2\)
\(OH=\left|3\right|=3\)
CH=\(\left|1\right|=1\)
Xét △OAB vuông tại O có
OA=OB=2
Suy ra △OAB vuông cân tại O
\(\Rightarrow\widehat{OAB}=45^0\)(1)
Ta có OH=AH+OA\(\Leftrightarrow AH=AH-OA=3-2=1\)
Xét △CHA vuông tại H có
AH=CH=1
Suy ra △CHA vuông cân tại H
\(\Rightarrow\)\(\widehat{CAH}=45^0\)(2)
Từ (1),(2)\(\Rightarrow\widehat{OAB}=\widehat{CAH}=45^0\)(3)
Mà O,A,H thẳng hàng(4)
Từ (3),(4)\(\Rightarrow\widehat{OAB}\) và \(\widehat{CAH}\) là hai góc đối đỉnh
\(\Rightarrow\)A,B,C thẳng hàng
\(\overrightarrow{AB}=\left(-2;-2\right)\)
\(\overrightarrow{AC}=\left(1;1\right)\)
Vì -2/1=-2/1
nên A,B,C thẳng hàng
AB2=(2-1)2+(0+1)2=2 =>AB=can(2)
BC2=(2+5)2+(0+7)2=98 =>BC=7*can(2)
AC2=(1+5)2+(-1+7)2=72 =>AC=6*can(2)
ta thay AB+AC=BC suy ra A nam giua B va C ;A,B,C thang hang