K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2015

Ta thấy: 10 đồng dư với 1(mod 3)

=>10n đồng dư với 1n(mod 3)

=>10n đồng dư với 1(mod 3)

Lại có: 139 đồng dư với 1(mod 3)

=>10n-139 đồng dư với 1-1(mod 3)

=>10n-139 đồng dư với 0(mod 3)

=>10n-139 chia hết cho 3

=>ĐPCM

29 tháng 7 2016

xét số dư n khi chia cho 7 là 1,2,3,4,5 hoặc 6 (do n không chia hết cho 7 )
=>số dư của \(n^3\)khi chia cho 7 lần lượt là 1,6
nếu dư 1=>n^3-1 chia hết cho 7
nếu dư 6=> n^3+1 chia hết cho 7
p/s : bài này bạn dùng đồng dư cũng đc -_-

29 tháng 7 2016

Gọi n=7x+a

n^3=(7x+a)^3, a=[1,2,3,4,5,6], x€Z vì n không chia hết cho 7

Khai hằng đẳng thức (7x+a)^3= ...+a^3

Những số kia chia hết cho 7 nên ta chỉ  xét a^3

Ta thay thế lần lượt a=1,..,6

Ta chứng minh đựợc a^3-1 hoặc a^3+1 sẽ chia hết cho 7.

22 tháng 12 2018

Dễ chứng minh m,n đều là số lẻ (sử dụng phản chứng vs n,m đều chẵn, 1 trong 2 số chẵn). Vậy ta có hđt mở rộng:

\(3^m+5^m+3^n+5^n=\left(3+5\right)\left(3^{m-1}-3^{m-2}.5+...\right)+\left(3+5\right)\left(3^{n-1}-3^{n-2}.5+...\right)\)

\(=8A+8B\)

=> \(3^n+5^m=8A+8B-3^m-5^n\)

=> \(3^n+5^m\)chia hết cho 8. d0pcm

3 tháng 7 2016

Vì 4 chia 3 dư 1, mũ lên bao nhiêu vẫn chia 3 dư 1

=> 4n với n thuộc N* luôn chia 4 dư 1

Mà 5 chia 3 dư 2

=> 4n + 5 chia hết cho 3

=> đpcm

Bài này lớp 6 bít lm

Ủng hộ mk nha

3 tháng 7 2016

Bạn đã học đồng dư chưa?

Ta có:

\(4\text{≡}1\left(mod3\right)\)

\(\Rightarrow4^n\text{≡}1^n\left(mod3\right)\)

\(\Rightarrow4^n\text{≡}1\left(mod3\right)\)

\(\Rightarrow4^n+5\text{≡}1+5\text{≡}6\text{≡}0\left(mod3\right)\)

Do đó \(4^n+5\) luôn chia hết cho 3 với mọi n thuộc N*.

13 tháng 10 2020

Ta có: \(x^3;y^3\equiv1;-1\left(mod9\right)\Rightarrow x^6\equiv y^6\equiv1\left(mod9\right)\Rightarrow x^6-y^6⋮9\)

10 tháng 2 2017

à thôi mn khỏi phải giải, mk làm đc r

12 tháng 2 2017

cậu chỉ ra mk xem cách giải cái  bài này nghĩ ma k ra  ak?