Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4 số liên tiếp nên chia hết cho 2.3.4=24
giá trị 9x luôn có các chữ số tận cùng là 9;1 nên 2 số 9x+1 hoặc 9x+4 sẽ cố số chia hết cho 5
nên nó chia hết cho 24.5=120
\(x^2+\left(m-1\right)x-6=0\)
Do \(a.c=-6< 0\Rightarrow\) pt luôn có 2 nghiệm phân biệt
Khi đó \(\left\{{}\begin{matrix}x_1+x_2=1-m\\x_1x_2=-6\Rightarrow x_1x_2+6=0\end{matrix}\right.\)
\(A=\left(x^2_1-9\right)\left(x_2^2-4\right)=\left(x_1-3\right)\left(x_2-2\right)\left(x_1+3\right)\left(x_2+2\right)\)
\(=\left(x_1x_2+6-2x_1-3x_2\right)\left(x_1x_2+6+2x_1+3x_2\right)\)
\(=-\left(2x_1+3x_2\right)\left(2x_1+3x_2\right)=-\left(2x_1+3x_2\right)^2\le0\)
\(\Rightarrow A_{max}=0\) khi \(2x_1+3x_2=0\)
Kết hợp với hệ thức Viet ta được: \(\left\{{}\begin{matrix}x_1x_2=-6\\2x_1+3x_2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{-3x_2^2}{2}=-6\\x_1=\dfrac{-3x_2}{2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_2=2\\x_1=-3\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x_2=-2\\x_1=3\end{matrix}\right.\)
\(\Rightarrow m=1-\left(x_1+x_2\right)\Rightarrow\left[{}\begin{matrix}m=2\\m=0\end{matrix}\right.\)
Có x8−x7+x5−x4+x3−x+1=x10+x5+1x2+x+1x8−x7+x5−x4+x3−x+1=x10+x5+1x2+x+1
x10+x5+1=(x5+12)2+34x10+x5+1=(x5+12)2+34
⇒x10+x5+1>0⇒x10+x5+1>0
x2+x+1=(x+12)2+34>0x2+x+1=(x+12)2+34>0
⇒x8−x7+x5−x4+x3−x+1>0
⇒x8−x7+x5−x4+x3−x+1>0
ích mk nha bạn
a/ Để hàm số đồng biến khi x>0
\(\Leftrightarrow1-2m>0\Rightarrow m< \frac{1}{2}\)
b/ Để hàm số nghịch biến khi x>0
\(\Leftrightarrow4m^2-9< 0\Leftrightarrow-\frac{3}{2}< m< \frac{3}{2}\)
c/ Để hàm số đồng biến khi x<0
\(\Leftrightarrow m^2-3m< 0\Leftrightarrow0< m< 3\)
d/ Do \(m^2-2m+3=\left(m-1\right)^2+2>0\) ;\(\forall m\)
\(\Rightarrow\) Hàm số đồng biến khi x>0 với mọi m
bài 1: a) \(mx^2-2\left(m-1\right)x+m+1=0\)
\(\Delta'=\left[-\left(m-1\right)\right]^2-m\left(m+1\right)\)
\(\Delta'=m^2-2m+1-m^2-m\)
\(\Delta'=-3m+1\)
để pt đã cho vô nghiệm thì \(\Delta'< 0\Leftrightarrow-3m+1< 0\Leftrightarrow m>\dfrac{1}{3}\)
b) \(3x^2+mx+m^2=0\)
có \(\Delta=m^2-4.3.m^2\)
\(\Delta=m^2-12m^2=-11m^2\)
để pt đã cho vô nghiệm thì \(\Delta< 0\Leftrightarrow-11m^2< 0\Leftrightarrow m>0\)
c) \(m^2.x^2-2m^2x+4m^2+6m+3=0\)
\(\Delta'=\left(-m^2\right)^2-m^2.\left(4m^2+6m+3\right)\)
\(\Delta'=m^4-4m^4-6m^3-3m^2\)\(\Delta'=-3m^4-6m^3-3m^2\)
để pt vô nghiệm thì \(\Delta'< 0\Leftrightarrow-3m^4-6m^3-3m^2< 0\)
\(\Leftrightarrow-3m^2.\left(m^2+2m+1\right)< 0\)
\(\Leftrightarrow-3m^2.\left(m+1\right)^2< 0\)
\(\Leftrightarrow-3m^2< 0\) ( vì \(\left(m+1\right)^2>0\forall m\ne-1\) )
\(\Leftrightarrow m>0\)
vậy \(m>0\) và \(m\ne1\)
Bài làm:
a) \(x^2-7=\left(x-\sqrt{7}\right)\left(x+\sqrt{7}\right)\)
b) \(4x^2-5=\left(2x-\sqrt{5}\right)\left(2x+\sqrt{5}\right)\)
c) \(3x^2-1=\left(x\sqrt{3}-1\right)\left(x\sqrt{3}+1\right)\)
d) \(x-1=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
e) \(x-4=\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\)
f) \(9x-4=\left(3\sqrt{x}-2\right)\left(3\sqrt{x}+2\right)\)
sử dụng dấu căn trong thanh công cụ này để soạn thảo câu hỏi rõ ràng nha