K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2016

1/5^2 + 1/6^2 + 1/7^2 + ... + 1/100^2

< 1/4×5 + 1/5×6 + 1/6×7 + ... + 1/99×100

< 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + ... + 1/99 - 1/100

< 1/4 - 1/100 < 1/4 ( đpcm)

4 tháng 2 2016

đặt 1/5^2+1/6^2+...+1/100^2=A

ta có: \(A<\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+..+\frac{1}{99}-\frac{1}{100}=\frac{1}{4}-\frac{1}{100}<\frac{1}{4}\left(1\right)\)

\(A>\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+..+\frac{1}{100.101}=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+..+\frac{1}{100}-\frac{1}{101}=\frac{1}{5}-\frac{1}{101}>\frac{1}{6}\left(do\frac{1}{5}>\frac{1}{6}\right)\left(2\right)\)

từ (1);(2)=>1/6<A<1/4

=>đpcm

14 tháng 8 2017

ok, ta co  \(A=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}\)

\(A< \frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{99\cdot100}\)

\(A< \frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+..+\frac{1}{99}-\frac{1}{100}\)

\(A< \frac{1}{4}-\frac{1}{100}\)

\(A< \frac{1}{4}\)

Lai co  \(A>\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+...+\frac{1}{100\cdot101}=\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+..+\frac{1}{100}-\frac{1}{101}\)

\(=\frac{1}{5}-\frac{1}{101}\)

\(A>\frac{1}{6}\)

Ta có\(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}< \frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(\Rightarrow\frac{1}{5}-\frac{1}{101}< A< \frac{1}{4}-\frac{1}{100}\)(A là đề bài)

Mà \(\frac{1}{5}-\frac{1}{30}=\frac{1}{6}< \frac{1}{5}-\frac{1}{101}< A< \frac{1}{4}-\frac{1}{100}< \frac{1}{4}\)

\(\Rightarrow\frac{1}{6}< A< \frac{1}{4}\left(ĐPCM\right)\)

10 tháng 1 2020

Ta có: \(\frac{1}{5\cdot6}< \frac{1}{5^2}=\frac{1}{5\cdot5}< \frac{1}{4\cdot5}\)

           \(\frac{1}{6\cdot7}< \frac{1}{6^2}=\frac{1}{6\cdot6}< \frac{1}{5\cdot6}\)

            \(\frac{1}{7\cdot8}< \frac{1}{7^2}=\frac{1}{7\cdot7}< \frac{1}{6\cdot7}\)

                       .............................

            \(\frac{1}{100\cdot101}< \frac{1}{100^2}=\frac{1}{100\cdot100}< \frac{1}{99\cdot100}\)

Đặt \(A=\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+...+\frac{1}{100\cdot101}\)

          \(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{100}-\frac{1}{101}\)

          \(=\frac{1}{5}-\frac{1}{101}=\frac{96}{505}>\frac{1}{6}\)

        \(B=\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{99\cdot100}\)

            \(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\)

             \(=\frac{1}{4}-\frac{1}{100}< \frac{1}{4}\)

\(=>\frac{1}{6}< A< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< B< \frac{1}{4}\)

\(=>\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}\left(Đpcm\right)\)

15 tháng 1 2020

Ta có: \(\frac{1}{5^2}< \frac{1}{4.5};\frac{1}{6^2}< \frac{1}{5.6};...;\frac{1}{100^2}< \frac{1}{99.100}\)

Cộng vế với vế ta được: \(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}=\frac{1}{4}-\frac{1}{100}=\frac{6}{25}< \frac{6}{24}=\frac{1}{4}\)(1)

Tương tự: \(\frac{1}{5^2}>\frac{1}{5.6};\frac{1}{6^2}>\frac{1}{6.7};...;\frac{1}{100^2}>\frac{1}{100.101}\)

Cộng vế với vế ta được \(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}=\frac{1}{5}-\frac{1}{101}=\frac{96}{505}>\frac{96}{576}=\frac{1}{6}\)(2)

Từ (1) và (2) =>đpcm

Đặt \(A=\displaystyle\sum_{i=5}^{100}\frac{1}{i^2}\)

\(A< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}=\frac{1}{4}-\frac{1}{100}< \frac{1}{4}\)

\(A>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}>\frac{1}{5}-\frac{1}{101}>\frac{1}{6}\)

sao cái mã latex ko hiển thị nhờ :(( A là cái biểu thức ở giữa nhé 

16 tháng 12 2019

\(Ta\)  \(có : \)

\(1 / 5^2 + 1 /6^2 + ... + 1 /100^2 < 1 /4.5\)\(+ 1 / 5 .6 + ... + 1 / 99 .100\)

\(Mà ta có:\)\(1 / 4 .5 + 1 / 5 .6 + ... + 1 / 99 .100\)

\(\Rightarrow\)\(1 / 4 - 1 / 5 + 1 / 5 - 1 / 6 + ... +\)\(1 / 99 - 1 / 100\)

\(\Rightarrow\)\(1 / 4 - 1 / 100\) \(< 1 / 4\)

\(Nên 1 / 5^2 + 1 /6^2 + ...+ 1 / 100^2 < 1 / 4\)

Tương tự chứng minh tiếp nhé 😘😘

31 tháng 5 2020

B=1/5^2+1/6^2+....+1/100^2.1/6<B<1/4

k đi rồi mk trả lời cho

ko tin người -_-