Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt \(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}=A\)
*chứng minh A<1/4
ta có:\(A<\frac{1}{4.5}+\frac{1}{5.6}+..+\frac{1}{99.100}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{4}-\frac{1}{100}<\frac{1}{4}\) *chứng minh A>1/6
ta có:
\(A>\frac{1}{5.6}+\frac{1}{6.7}+..+\frac{1}{100.101}=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+..+\frac{1}{100}-\frac{1}{101}=\frac{1}{5}-\frac{1}{101}>\frac{1}{6}\)
từ 2 điều trên =>đpcm
mk chắc chắn đúng,hồi chiều cô mk ms cho làm
1/5^2< 1/4.5=1/4-1/5
1/6^2<1/5.6=1/5-1/6
..
1/99^2<1/98.99=1/98-1/99
1/100^2<1/99.100=1/99-1/100
Cộng vế theo vế
=> 1/5^2+1/6^2+...+1/100^2< 1/4 -1/100<1/4
1/5^2> 1/5.6=1/5-1/6
1/6^2>1/6.7=1/6-1/7
..
1/99^2>1/99.100=1/99-1/100
1/100^2>1/100.101=1/100-1/101
Cộng vế theo vế
=> 1/5^2+1/6^2+...+1/100^2>1/5 -1/101=96/505>1/6
ok, ta co \(A=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}\)
\(A< \frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{99\cdot100}\)
\(A< \frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+..+\frac{1}{99}-\frac{1}{100}\)
\(A< \frac{1}{4}-\frac{1}{100}\)
\(A< \frac{1}{4}\)
Lai co \(A>\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+...+\frac{1}{100\cdot101}=\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+..+\frac{1}{100}-\frac{1}{101}\)
\(=\frac{1}{5}-\frac{1}{101}\)
\(A>\frac{1}{6}\)
Ta có:
\(\frac{1}{5^2}>\frac{1}{5.6}\)
\(\frac{1}{6^2}>\frac{1}{6.7}\)
.......
\(\frac{1}{100^2}>\frac{1}{100.101}\)
\(\Rightarrow\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}\) \(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\) = \(\frac{1}{5}-\frac{1}{101}>\frac{1}{5}-\frac{1}{30}=\frac{1}{6}\) \(\Rightarrow\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}>\frac{1}{6}\) (1)
Tương tự ta có:
\(\frac{1}{5^2}< \frac{1}{4.5}\)
\(\frac{1}{6^2}< \frac{1}{5.6}\)
......
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\) \(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{4}-\frac{1}{100}< \frac{1}{4}\)
\(\Rightarrow\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{4}\) (2)
Từ (1) và (2)
\(\Rightarrow\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{4}\) (đpcm)
_Chúc_bạn_học_tốt_
chịu thui
chúc bn học gioi!
nhaE@@
Toán lớp 7 bye mk đi hc đây hihi
$$$$
Ta có : \(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}\)
= \(\frac{1}{3}+\)( \(\frac{1}{31}+\frac{1}{35}+\frac{1}{37}\)) \(+\)( \(\frac{1}{47}+\frac{1}{53}+\frac{1}{61}\) ) \(< \)\(\frac{1}{3}+\)( \(\frac{1}{30}+\frac{1}{30}+\frac{1}{30}\)) \(+\)( \(\frac{1}{45}+\frac{1}{45}+\frac{1}{45}\)) = \(\frac{1}{2}\)
Vậy \(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}< \frac{1}{2}\)
Ta có: \(\frac{1}{5^2}< \frac{1}{4.5};\frac{1}{6^2}< \frac{1}{5.6};...;\frac{1}{100^2}< \frac{1}{99.100}\)
Cộng vế với vế ta được: \(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}=\frac{1}{4}-\frac{1}{100}=\frac{6}{25}< \frac{6}{24}=\frac{1}{4}\)(1)
Tương tự: \(\frac{1}{5^2}>\frac{1}{5.6};\frac{1}{6^2}>\frac{1}{6.7};...;\frac{1}{100^2}>\frac{1}{100.101}\)
Cộng vế với vế ta được \(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}=\frac{1}{5}-\frac{1}{101}=\frac{96}{505}>\frac{96}{576}=\frac{1}{6}\)(2)
Từ (1) và (2) =>đpcm
Ta có\(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}< \frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{5}-\frac{1}{101}< A< \frac{1}{4}-\frac{1}{100}\)(A là đề bài)
Mà \(\frac{1}{5}-\frac{1}{30}=\frac{1}{6}< \frac{1}{5}-\frac{1}{101}< A< \frac{1}{4}-\frac{1}{100}< \frac{1}{4}\)
\(\Rightarrow\frac{1}{6}< A< \frac{1}{4}\left(ĐPCM\right)\)
Ta có: \(\frac{1}{5\cdot6}< \frac{1}{5^2}=\frac{1}{5\cdot5}< \frac{1}{4\cdot5}\)
\(\frac{1}{6\cdot7}< \frac{1}{6^2}=\frac{1}{6\cdot6}< \frac{1}{5\cdot6}\)
\(\frac{1}{7\cdot8}< \frac{1}{7^2}=\frac{1}{7\cdot7}< \frac{1}{6\cdot7}\)
.............................
\(\frac{1}{100\cdot101}< \frac{1}{100^2}=\frac{1}{100\cdot100}< \frac{1}{99\cdot100}\)
Đặt \(A=\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+...+\frac{1}{100\cdot101}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{100}-\frac{1}{101}\)
\(=\frac{1}{5}-\frac{1}{101}=\frac{96}{505}>\frac{1}{6}\)
\(B=\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{99\cdot100}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{4}-\frac{1}{100}< \frac{1}{4}\)
\(=>\frac{1}{6}< A< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< B< \frac{1}{4}\)
\(=>\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}\left(Đpcm\right)\)