K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2017

a,n2+4n+4 = n^2 + 2n + 2n + 4= n(n+2) +2(n+2) = (n+2)^2 => kết luận ..........

 b,n.(n+2)+1 = n^2 + 2n + 1 = n^2 + n+ n + 1 = n(n+1)+1(n+1) = (n+1)^2 => kết luận ...............

 c,(n+1).(n+2)+n+2 = n(n+2)+n+2 + n + 2 = n^2 + 2n + 2n + 4 = n(n+2) + 2(n+2) = (n+2)^2 => kết luận .....

15 tháng 8 2017

a, Ta có

a=n2+10n+25

=n2+5n+5n+25

=n(n+5)+5(n+5)

=(n+5)2

bTa có

b=16n2+4n+4n+1

=4n(4n+1)+(4n+1)

=(4n+1)2

c,

c=9n2+12n+4

=(3n)2+6n+6n+22

=3n(3n+2)+2(3n+2)

=(3n+2)2

d,

n.(n+1)(n+2)(n+3)+1

=n(n+3)(n+1)(n+2)+1

=(n2+3n)(n2+3n+2)+1

Đặt n2+3n+1=x

=>(n2+3n)(n2+3n+2)+1=(x-1)(x+1)+1

=(x2+x-z-1)+1

=x2=(n2+3n+1)2

15 tháng 8 2017

Cảm ơn bạn

20 tháng 7 2019

1) Ta có: \(10\equiv1\left(mod3\right)\Rightarrow10^n\equiv1\left(mod3\right)\Rightarrow10^n-1⋮3\)

Ta có: \(\left(10^n+1\right)\left(10^n+2\right)=\left(10^n+1\right)\left(10^n-1+3\right)\)

Do \(\hept{\begin{cases}10^n-1⋮3\\3⋮3\end{cases}}\Rightarrow\left(10^n+1\right)\left(10^n+2\right)⋮3\)

2) Ta có: Xét: \(1!+2!+3!+4!+5!+...+n!\)

Xét: \(n\ge5\) thì: \(1!+2!+3!+4!+5!+...+n!=33+5!+...+n!\)

Ta có: \(5!=1.2.3.4.5=\left(2.5\right).1.3.4\) có tận cùng bằng 0

Tương tự,ta suy ra được với n>=5 thì n! có tận cùng bằng 5 (do có chứa 2 thừa số 2 và 5)

\(\Rightarrow33+5!+...+n!\) tận cùng bằng 3 (loại vì scp ko có tận cùng bằng 3)

Như vậy, \(n< 5\)

Với \(n=1;1!+2!+3!+...+n!=1\left(TM\right)\)

Với \(n=2;1!+2!=5\left(KTM\right)\)

Với \(n=3;1!+2!+3!=9\left(TM\right)\)

Với \(n=4;1!+2!+3!+4!=33\left(KTM\right)\)

Vậy n bằng 1 hoặc 3

3) Ta có: \(a;b;c;d\in N\Rightarrow a+b+c+d>2\)

Giả sử \(a+b+c+d\) là số nguyên tố. Ta có: \(a+b+c+d=p\)(p nguyên tố) 

\(\Rightarrow a=p-b-c-d\Leftrightarrow ab=pb-b^2-bc-bd\)

\(\Leftrightarrow ab+b^2+bc+bd=pb\)

\(\Leftrightarrow cd+b^2+bc+bd=pb\Rightarrow\left(b+c\right)\left(b+d\right)=pb⋮p\)

Do p nguyên tố \(\Rightarrow\orbr{\begin{cases}b+c⋮p\\b+d⋮p\end{cases}}\Rightarrow\orbr{\begin{cases}b+c>p\\b+d>p\end{cases}}\Rightarrow\orbr{\begin{cases}b+c>a+b+c+d\\b+d>a+b+c+d\end{cases}}\left(vo-ly\right)\)

Vậy a+b+c+d là hợp số 

Ta xét hiệu: \(a^n+b^n+c^n+d^n-a-b-c-d⋮2\)(Fermat nhỏ)

\(\Rightarrow a^n+b^n+c^n+d^n⋮2;a^n+b^n+c^n+d^n>2\Rightarrow a^n+b^n+c^n+d^n\) là hợp số (đpcm) 

22 tháng 7 2019

Girl

Thank you =))

17 tháng 6 2015

3m2+m=4n2+n

=>(m-n)(4m+4n+1)=m2(1)(phân tích ra là về cái ban đầu nhé)

Gọi d là 1 ước chung của m-n và 4m+4n+1

=>(m-n)(4m+4n+1) chia hết cho d.d=d2

Từ (1) =>m2 chia hết cho d2

=>m chia hết cho d

Mà m-n cũng chia hết cho d => n chia hết cho d

=>4m+4n+1 chia d dư 1(vô lí vì d được giả sử là ước của 4m+4n+1)

=>4m+4n+1 và m-n nguyên tố cùng nhau

 khi phân tích a hoặc b có thừa số nguyên tố p với mũ lẻ mà 2 số này nguyên tố cùng nhau nên số còn lại không chưa p =>m2 bằng tích của p với 1 số khác p.Mà m2 là số chính phương nên điều trên là vô lí

=>m-n và 4m+4n+1 phải cùng là số chính phương(ĐPCM)

Hơi khó hiểu nhưng đúng đó Đây là mình cố giải thích cho bạn chứ thực ra k có dòng giải thích dài dài kia đâu

25 tháng 2 2018

Khó lắm

Đặt n = 2k , ta có                      ( đk k >= 1 do n là một số chẵn lớn hơn 4)

\(\left(2k\right)^4-4\times\left(2k\right)^3-4\times\left(2k\right)^2+16\times2k\)

\(=16k^4-32k^3-16k^2+32k\)

\(=16k^2\left(k^2-1\right)-32k\left(k^2-1\right)\)

\(=16k\times k\left(k-1\right)\left(k+1\right)-32\times k\left(k-1\right)\left(k+1\right)\)

Nhận xét \(\left(k-1\right)k\left(k+1\right)\)  là 3 số tự nhiên liên tiếp nên 

\(\left(k-1\right)k\left(k+1\right)\) chia hết cho 3

Suy ra điều cần chứng minh

23 tháng 11 2016

câu 1:

a, giả sử 2 số chẵn liên tiếp là 2k và (2k+2) ta có:

2k(2k+2) = 4k2+4k = 4k(k+1) chia hết cho 8 vì 4k chia hết cho 4, k(k+1) chia hết cho 2

b, giả sử 3 số nguyên liên tiếp là a,a+1,a+2 với mọi a thuộc Z

  • a,a+1,a+2 là 3 số nguyên liên tiếp nên tồn tại duy nhất một số chẵn hoặc có 2 số chẵn nên tích của chúng sẽ chia hết cho 2.

mặt khác vì là 3 số tự nhiên liên tiếp nên sẽ chia hết cho 3.

vậy tích của 3 số nguyên liên tiếp chia hết cho 6.

c, giả sử 5 số nguyên liên tiếp là a,a+1,a+2, a+3,a+4 với mọi a thuộc Z

  • vì là 5 số nguyên liên tiếp nên sẽ tồn tại 2 số chẵn liên tiếp nên theo ý a tích của chúng choa hết cho 8.
  • tích của 3 số nguyên liên tiếp chia hết cho 3.
  • tích của 5 số nguyên liên tiếp chia hết cho 5.

vậy tích của 5 số nguyên liên tiếp chia hết cho 120.

câu 2:

a, a3 + 11a = a[(a- 1)+12] = (a - 1)a(a+1) + 12a

  • (a - 1)a(a+1) chia hết cho 6 ( theo ý b câu 1)
  • 12a chia hết cho 6.

vậy a3 + 11a chia hết cho 6.

b, ta có a- a = a(a2 - 1) = (a-1)a(a+1) chia hết cho 3 (1) 

mn(m2-n2) = m3n - mn3 = m3n - mn + mn - mn3 = n( m- m) - m(n3 -n)

theo (1) mn(m2-n2) chia hết cho 3.

c, ta có: a(a+1)(2a+10 = a(a+1)(a -1+ a +2) = [a(a+1)(a - 1) + a(a+1)(a+2)] chia hết cho 6.( théo ý b bài 1)

31 tháng 1 2016

bài này mình làm được nhưng hơi dài lên mất khoảng 2 đến 3 phút bạn đợi mình được không ?

31 tháng 1 2016

bai nay ???????????????