K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2018

TÌM GIÁ TRỊ NHỎ NHẤT CỦA BIỂU THỨC:

1)  \(x^2+8\)

Gọi biểu thức trên là A.

Nhận xét;  \(x^2\ge0\forall x\)

\(\Rightarrow x^2+8\ge8\forall x\)

Vậy  \(minA=8\) khi  \(x^2=0\)\(\Rightarrow x=0\)

KL: Vậy \(minA=8\) khi  \(x=0\)

2)  \(2x^2+4x+15\)

\(\Rightarrow2x^2+4x+1+14\)

\(\Rightarrow\left(2x^2+1\right)^2+14\)

Gọi biểu thức trên là B.

Nhận xét: \(\left(2x^2+1\right)^2\ge0\forall x\)

\(\Rightarrow\left(2x^2+1\right)^2+14\ge14\forall x\)

Vậy  \(minB=14\) khi \(\left(2x^2+1\right)^2=0\)\(\Rightarrow2x^2+1=0\)\(\Rightarrow2x^2=1\)\(\Rightarrow x=\sqrt{\frac{1}{2}}\)

KL: Vậy  \(minB=14\) khi  \(x=\sqrt{\frac{1}{2}}\)

10 tháng 7 2018

Tìm giá trị nhỏ nhất của biểu thức bạn AKIWA MAIYA  làm rồi . 

 Chứng minh biểu thức luôn âm với mọi x

a) \(-x^2+2x-7\)

\(=-\left(x^2-2x+7\right)\)

\(=-\left(x^2-2.x.1+1^2+7\right)\)

\(=-\left[\left(x-1\right)^2+7\right]\)

Vì \(-\left[\left(x-1\right)^2+7\right]< 0\)

=> Biểu thức trên nhận giá trị âm với mọi x .

b) Tương tự

Bài 2:

a: \(A=x^2+8>=8\)

Dấu '=' xảy rakhi x=0

b: \(B=2\left(x^2+2x+\dfrac{15}{2}\right)\)

\(=2\left(x^2+2x+1+\dfrac{13}{2}\right)=2\left(x+1\right)^2+13>=13\)

Dấu '=' xảy ra khi x=-1

10 tháng 7 2018

1.

a)

\(-x^2+2x-7\left(1\right)\\ \Leftrightarrow-\left(x^2-2x+7\right)\\ \Leftrightarrow-\left[\left(x^2-2x+1\right)+6\right]\\ \Leftrightarrow-\left[\left(x-1\right)^2+6\right]\le-6\forall x\)

=> BT (1) luôn âm với mọi x

b)

\(-5x^2+20x-49\left(2\right)\\ \Leftrightarrow-\left(5x^2-20x+49\right)\\ \Leftrightarrow-\left(x^2-4x+\dfrac{49}{5}\right)\Leftrightarrow-\left[\left(x^2-4x+4\right)+\dfrac{29}{5}\right]\Leftrightarrow-\left[\left(x-2\right)^2+\dfrac{29}{5}\right]\le\dfrac{29}{5}\forall x\)

=> BT (2) luôn âm với mọi x

10 tháng 7 2018

Bài 1 :

\(-x^2+2x-7\)

\(=\left(-x^2+2x-1\right)-6\)

\(=-\left(x^2-2x+1\right)-6\)

\(=-\left(x-1\right)^2-6\)

Do \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow-\left(x-1\right)^2-6\le-6< 0\)

Vậy biểu thức luôn âm với mọi giá trị của x .

\(-5x^2+20x-49\)

\(=\left(-5x^2+20x-20\right)-29\)

\(=-5\left(x^2-4x+4\right)-29\)

\(=-5\left(x-2\right)^2-29\)

Do \(\left(x-2\right)^2\ge0\Rightarrow-5\left(x-2\right)^2\le0\Rightarrow-5\left(x-2\right)^2-29\le-29< 0\)

Vậy biểu thức luôn âm với mọi giá trị của x

Bài 2 :

\(x^2+8x=x^2+8x+16-16=\left(x+4\right)^2-16\ge-16\)

\(2x^2+4x+15=2x^2+4x+2+13=2\left(x+1\right)^2+13\ge13\)

11 tháng 7 2018

Gọi biểu thức là A.

\(A=-5x^2+20x-49\)

\(A=-5x^2+20x-2-47\)

\(A=-\left(5x^2-20x+2\right)-47\)

\(A=-\left(5x-2\right)^2-47\)

Nhận xét:   \(-\left(5x-2\right)^2\le0\forall x\)

\(\Rightarrow-\left(5x-2\right)^2-47\le-47\forall x\)

Vậy biểu thức trên luôn âm với mọi x.

5 tháng 7 2017

Ta có : 9x2 + 12x + 15

= (3x)2 + 2.3x.2 + 4 + 11

= (3x + 2)2 + 11

Mà (3x + 2)2 \(\ge0\forall x\)

Nên (3x + 2)2 + 11 \(\ge11\forall x\)

Vậy Bmin = 11 dấu "=" sảy ra khi và chỉ khi x = \(-\frac{2}{3}\)

5 tháng 7 2017

Ta có : A = x2 - 4x - 6 

= x2 - 4x + 4 - 10

= (x - 2)2 - 10

Mà (x - 2)\(\ge0\forall x\)

=> (x - 2)2 - 10 \(\ge-10\forall x\)

Vậy Amin = -10 dấu "=" sảy ra khi và chỉ khi x = 2

11 tháng 7 2018

\(-5x^2+20x-49=-5\left(x^2-4x+4\right)-29=-5\left(x-2\right)^2-29\le-29\)

Vậy bt luôn âm với mọi x

26 tháng 7 2017

ta co A=4x^2-2x+3

A=4x^2-2x+1+2

a=

2 tháng 7 2016

a/x^4 lớn hơn hoặc = 0 

x^2 lớn hơn hoặc = 0

2 > 0

=> x^4+x^2+2 >0 => bieu thức luôn dương

b/ (x+3)(x-11)+2003 <=> x^2 -8x -33 +2003 <=> x^2 -8x +1970 <=> x^2-8x+16+1954 <=> (x-4)^2+1954 

ta có : (x-4)^2 lớn hơn hoặc = 0

           1954 >0

=> (x-4)^2+1954>0 => bt luôn dương

Bài 1 trước nha . chúc bạn học tốt . Ủng hộ nha

2 tháng 7 2016

\(=>-9\left(x^2-\frac{4}{3}x+\frac{5}{3}\right)=>-9\left(x^2-2.\frac{2}{3}x+\frac{4}{9}+\frac{11}{9}\right)=>-9\left(x-\frac{2}{3}\right)^2-11\)

Ta có \(\left(x-\frac{2}{3}\right)^2\ge0=>-9\left(x-\frac{2}{3}\right)^2\le0,-11< 0\)

\(-9\left(x-\frac{2}{3}\right)^2-11\le0\)=> bt luôn âm

26 tháng 11 2016

Câu 2:
a,x(x−6)+10x(x−6)+10
= x2−6x+10x2−6x+10
=(x−3)2+1>0(x−3)2+1>0\forall x
b, x2−2x+9y2−6y+3x2−2x+9y2−6y+3
= (x2−2x+1)+(9y2−6y+1)+1(x2−2x+1)+(9y2−6y+1)+1
=(x−1)2+(3y−1)2+1>0(x−1)2+(3y−1)2+1>0 

kkkkkkkk cho mình nha

26 tháng 11 2016

A=x^2-6x+10=x^2-6x+9+1=(x-3)^2+1

Co (x-3)^2>=0            1>0

=>A>0 voi moi x