K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2021

A = ( 3x )3 + 23 - 27x3 + 6 = 27x3 + 8 - 27x3 + 6 = 14 ( đpcm )

B = x3 + 3x2 + 3x + 1 - ( x3 - 1 ) - 3x2 - 3x = x3 + 1 - x3 + 1 = 2 ( đpcm )

C = 6( x + 2 )( x2 - 2x )( x2 - 2x + 4 ) - 6x3 - 2 ( bạn xem lại đề bài nhé ._. )

D = 2[ ( 3x )3 + 13 ] - 54x3 = 2( 27x3 + 1 ) - 54x3 = 54x3 + 2 - 54x3 = 2 ( đpcm )

15 tháng 7 2021

A = 6( x3 + 23 ) - 6x3 - 2 = 6x3 + 48 - 6x3 - 2 = 46 ( đpcm )

15 tháng 7 2021

\(6\left(x+2\right)\left(x^2-2x+4\right)-6x^3-2\)

\(=6\left(x^3+8\right)-6x^3-2\)

\(=6x^3+48-6x^3-2\)

\(=46\)

Vậy ...

1 tháng 9 2020

a) \(A=\left(3x-2\right)\left(3x+2\right)-\left(3x+1\right)^2-3.\left(-2x-1\right)\)

\(=\left(3x\right)^2-4-\left(9x^2+6x+1\right)+6x+3\)

\(=9x^2-4-9x^2-6x-1+6x+3\)

\(=-2\) không phụ thuộc vào x

b) \(B=\left(x+1\right)\left(x-1\right)-\left(x-2\right)^2-4.\left(x+3\right)\)

\(=x^2-1-\left(x^2-4x+4\right)-\left(4x+12\right)\)

\(=x^2-1-x^2+4x-4-4x-12\)

\(=-17\)không phụ thuộc vào x.

19 tháng 8 2019

Lời giải :

1. \(\left(\frac{1}{2}a+b\right)^3+\left(\frac{1}{2}a-b\right)^3\)

\(=\frac{a^3}{8}+\frac{3a^2b}{4}+\frac{3ab^2}{2}+b^3+\frac{a^3}{8}-\frac{3a^2b}{4}+\frac{3ab^2}{2}-b^3\)

\(=\frac{a^3}{4}+3ab^2\)

19 tháng 8 2019

Lời giải :

2. \(x^3-3x^2+3x-1=0\)

\(\Leftrightarrow\left(x-1\right)^3=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\)

Vậy...

19 tháng 8 2019

1) \(\left(\frac{1}{2}a+b\right)^3+\left(\frac{1}{2}a-b\right)^3\)

\(=\left(\frac{a}{2}+b\right)^2+\left(\frac{a}{2}-b\right)^2\)

\(=\left(\frac{a}{2}+b\right)\left[\left(\frac{a}{2}\right)^2+2.\frac{a}{b}b+b^2\right]+\left(\frac{a}{2}-b\right)\left[\left(\frac{a}{2}\right)^2-2.\frac{a}{2}b+b^2\right]\)

\(=\frac{a}{2}\left[\left(\frac{a}{2}\right)^2+2.\frac{a}{2}b+b^2\right]+b\left[\left(\frac{a}{2}\right)^2+2.\frac{a}{2}b+b^2\right]+\frac{a}{2}\left[\left(\frac{a}{2}\right)^2-2.\frac{a}{2}b+b^2\right]\)\(-b\left[\left(\frac{a}{2}\right)^2-2.\frac{a}{2}b+b^2\right]\)

\(=\frac{a^3}{8}+\frac{a^2b}{2}+\frac{ab^2}{2}+\frac{ba^2}{4}+b^2a+b^3+\frac{a^3}{8}-\frac{a^2b}{2}+\frac{ab^2}{2}-\frac{ba^2}{4}+b^2a-b^3\)

\(=\frac{a^3}{4}+3ab^2\)

2) \(x^3-3x^2+3x-1=0\)

\(\Leftrightarrow x^3-3x^2.1+3.x.1^2-1^3=0\)

\(\Leftrightarrow\left(x+1\right)^3=0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=0-1\)

\(\Rightarrow x=-1\)

3) \(A=\left(4x-1\right)^3-\left(4x-3\right)\left(16x^2+3\right)\)

\(A=64x^3-32x^2+4x-16x^2+8x-1-64x^3-12x+48x^2+9\)

\(A=8\)

Vậy: biểu thức không phụ thuộc vào biến

19 tháng 8 2019

1) \(\left(x+5\right)^3-x^3-125\)

\(=\left(x+5\right)\left(x^2+2x.5+5^2\right)-x^3-125\)

\(=x\left(x^2+2x.5+5^2\right)+5\left(x^2+2x.5+5^2\right)-x^3-125\)

\(=x^3+10x^2+25x+5x^2+50x+125-x^3-125\)

\(=15x^2+75x\)

2) \(\left(x-2\right)^3+6\left(x+1\right)^2-x^3+12=0\)

\(\Leftrightarrow x^3-4x^2+4x-2x^2+8x-8+6x^2+12x+6-x^3+12=0\)

\(\Leftrightarrow24x+10=0\)

\(\Leftrightarrow24x=0-10\)

\(\Leftrightarrow24x=-10\)

\(\Leftrightarrow x=-\frac{10}{24}=-\frac{5}{12}\)

\(\Rightarrow x=-\frac{5}{12}\)

3) \(\left(x-1\right)^3-x^3+3x^2-3x+1\)

\(=\left(x-1\right)\left(x^2-2x+1\right)-x^3+3x^2-3x+1\)

\(=x\left(x^2-2x+1\right)-\left(x^2-2x+1\right)-x^3+3x^2-3x+1\)

\(=x^3-2x^2+x-x^2+2x-1-x^3-3x^2-3x+1\)

\(=0\)

Vậy: biểu thức không phụ thuộc vào biến

21 tháng 9 2020

P = ( x + 2 )3 + ( x - 2 )3 - 2x( x2 + 12 )

= x3 + 6x2 + 12x + 8 + x3 - 6x2 + 12x - 8 - 2x3 - 24x

= ( x3 + x3 - 2x3 ) + ( 6x2 - 6x2 ) + ( 12x + 12x - 24x ) + ( 8 - 8 )

= 0 

Vậy giá trị của P không phụ thuộc vào biến

Q = ( x - 1 )3 - ( x + 1 )3 + 6( x + 1 )( x - 1 )

= x3 - 3x2 + 3x - 1 - ( x+ 3x2 + 3x + 1 ) + 6( x2 - 1 )

= x3 - 3x2 + 3x - 1 - x3 - 3x2 - 3x - 1 + 6x2 - 6

= ( x3 - x3 ) + ( 6x2 - 3x2 - 3x2 ) + ( 3x - 3x ) + ( -1 - 1 - 6 )

= -8

Vậy giá trị của Q không phụ thuộc vào biến

Bài 1: 

\(A=x^2+4x-21-\left(2x^2-2x-5x+5\right)\)

\(=x^2+4x-21-2x^2+7x-5\)

\(=-x^2+11x-26\)

Khi x=0thì A=-26

Khi x=1 thì \(A=-1+11-26=10-26=-16\)

Khi x=-1 thì \(A=-1-11-26=-38\)