K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2021

\(a^4+b^4-a^3b-ab^3=a^3\left(a-b\right)-b^3\left(a-b\right)=\left(a-b\right)\left(a^3-b^3\right)=\left(a-b\right)\left(a-b\right)\left(a^2+ab+b^2\right)=\left(a-b\right)^2\left(a^2+ab+b^2\right)\)

Có: \(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\\a^2+ab+b^2>0\end{matrix}\right.\)

\(\Rightarrow a^4+b^4-a^3b-ab^3\ge0\)

\(\Rightarrow a^4+b^4\ge a^3b+ab^3\)

10 tháng 4 2021

Áp dụng BĐT cosi với 2 số không âm:

`a^4+b^4+b^4+b^4>=4\root4{a^4b^12}=4|ab^3|>=4ab^3`

Hoàn toàn tương tự:

`b^4+a^4+a^4+a^4>=4a^3b`

`=>a^4+b^4+b^4+b^4+b^4+a^4+a^4+a^4>=4ab^3+4a^3b`

`<=>4(a^4+b^4)>=4(ab^3+a^3b)`

`<=>a^4+b^4>=ab^3+a^3b`

Bài 2: 

a+b+c+d=0

nên b+c=-(a+d)

\(a^3+b^3+c^3+d^3\)

\(=\left(a+d\right)^3-3ad\left(a+d\right)+\left(b+c\right)^3-3bc\left(b+c\right)\)

\(=-\left(b+c\right)^3+3ad\left(b+c\right)+\left(b+c\right)^3-3bc\left(b+c\right)\)

\(=3ad\left(b+c\right)-3bc\left(b+c\right)\)

\(=\left(b+c\right)\left(3ad-3bc\right)\)

\(=3\left(b+c\right)\left(ad-bc\right)\)

30 tháng 6 2017

\(a+b=a^3+b^3=1\)

\(\Leftrightarrow a+b=\left(a+b\right)\left(a^2-ab+b^2\right)=1\)

\(\Leftrightarrow a^2-ab+b^2=1\)

\(\Leftrightarrow\left(a^2+2ab+b^2\right)-3ab=1\)

\(\Leftrightarrow\left(a+b\right)^2-3ab=1\)

\(\Leftrightarrow1-3ab=1\)

\(\Rightarrow ab=0\)

Ta có : \(\left(a+b\right)^2=1\)

\(\Leftrightarrow a^2+b^2+2ab=1\)

\(\Rightarrow a^2+b^2=1\) (1)

\(\Leftrightarrow\left(a^2+b^2\right)^2=a^4+b^4+2\left(ab\right)^2=1\)

\(\Rightarrow a^4+b^4=1\)(2)

Từ (1) ; (2) => đpcm

1 tháng 7 2017

thank

8 tháng 6 2016

nhan vao 2 ve la song

8 tháng 6 2016

có thể trình bày rõ ra đc ko bạn

2 tháng 1 2019

áp dụng bđt cô si 

a+ a4 +a+1 >= 4a3 <=> 3a4 + 1 >= 4a3

cmtt với b và c ta có :

3b4 +1 >= 4b3

3c + 1  >= 4c3

=> 3a4 +3b4 +3c4  >= 3a3 +3b3 +3c3 +(a3 +b3 +c3 - 3) = 3a3 + 3b3 +3c

đpcm 

dấu bằng xảy ra khi a = b = c = 1

7 tháng 1 2019

có gì đó sai sai ở dòng thứ 3 từ dưới lên bn à

3 tháng 9 2016

\(\left(a^2+a+4\right)^2+8a\left(a^2+a+4\right)+15a^2=\left(a^2+a+4\right)^2+8a\left(a^2+a+4\right)+16a^2-a^2=\left(a^2+a+4+4a\right)^2-a^2\)

\(\left(a^2+5a+4\right)^2-a^2=\left(a^2+5a+a+4\right)\left(a^2+5a-a+4\right)=\left(a^2+6a+4\right)\left(a^2+4a+4\right)=\left(a^2+6a+4\right)\left(a+2\right)^2\)

3 tháng 9 2016

a,9a^3-13a+6

=9a^3-6a^2+6a^2-4a-9a+6

=3a^2(3a-2)+2a(3a-2)-3(3a-2)

=(3a^2+2a-2)(3a-2)

 

11 tháng 7 2016

1. Cần sửa lại thành \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)

Ta có : \(a^2+b^2+c^2-3=2\left(a+b+c\right)\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\Leftrightarrow\hept{\begin{cases}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\\\left(c-1\right)^2=0\end{cases}}\) \(\Leftrightarrow a=b=c=1\)

2. Cần sửa lại thành :  \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

Ta có : \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=3\left(ab+bc+ac\right)\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\Leftrightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\) \(\Leftrightarrow a=b=c\)

3. Ta có : \(a+b+c=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\Leftrightarrow ab+bc+ac=\frac{-\left(a^2+b^2+c^2\right)}{2}=-\frac{1}{2}\)\(\Leftrightarrow\left(ab+bc+ac\right)^2=\frac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\frac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}\)

Lại có : \(1=\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(\Leftrightarrow a^4+b^4+c^4=1-2\left(a^2+b^2+c^2\right)=1-2.\frac{1}{4}=\frac{1}{2}\)

11 tháng 7 2016

tài năng toán học hoàng lê bảo ngọc,tui công nhận bn 3 lần/ngày

20 tháng 10 2019

\(\left(a-b\right)\left(a^4+a^3b+a^2b^2+ab^3+b^4\right)\)

\(=a\left(a^4+a^3b+a^2b^2+ab^3+b^4\right)\)

\(-b\left(a^4+a^3b+a^2b^2+ab^3+b^4\right)\)

\(=a^5+a^4b+a^3b+a^2b^3+ab^4\)

\(-a^4b-a^3b^2-a^2b^3-ab^4-b^5\)

\(=a^5-b^5\left(đpcm\right)\)