Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a+b+c+d=0
nên b+c=-(a+d)
\(a^3+b^3+c^3+d^3\)
\(=\left(a+d\right)^3-3ad\left(a+d\right)+\left(b+c\right)^3-3bc\left(b+c\right)\)
\(=-\left(b+c\right)^3+3ad\left(b+c\right)+\left(b+c\right)^3-3bc\left(b+c\right)\)
\(=3ad\left(b+c\right)-3bc\left(b+c\right)\)
\(=\left(b+c\right)\left(3ad-3bc\right)\)
\(=3\left(b+c\right)\left(ad-bc\right)\)
\(a+b=a^3+b^3=1\)
\(\Leftrightarrow a+b=\left(a+b\right)\left(a^2-ab+b^2\right)=1\)
\(\Leftrightarrow a^2-ab+b^2=1\)
\(\Leftrightarrow\left(a^2+2ab+b^2\right)-3ab=1\)
\(\Leftrightarrow\left(a+b\right)^2-3ab=1\)
\(\Leftrightarrow1-3ab=1\)
\(\Rightarrow ab=0\)
Ta có : \(\left(a+b\right)^2=1\)
\(\Leftrightarrow a^2+b^2+2ab=1\)
\(\Rightarrow a^2+b^2=1\) (1)
\(\Leftrightarrow\left(a^2+b^2\right)^2=a^4+b^4+2\left(ab\right)^2=1\)
\(\Rightarrow a^4+b^4=1\)(2)
Từ (1) ; (2) => đpcm
áp dụng bđt cô si
a4 + a4 +a4 +1 >= 4a3 <=> 3a4 + 1 >= 4a3
cmtt với b và c ta có :
3b4 +1 >= 4b3
3c4 + 1 >= 4c3
=> 3a4 +3b4 +3c4 >= 3a3 +3b3 +3c3 +(a3 +b3 +c3 - 3) = 3a3 + 3b3 +3c3
đpcm
dấu bằng xảy ra khi a = b = c = 1
\(\left(a^2+a+4\right)^2+8a\left(a^2+a+4\right)+15a^2=\left(a^2+a+4\right)^2+8a\left(a^2+a+4\right)+16a^2-a^2=\left(a^2+a+4+4a\right)^2-a^2\)
\(\left(a^2+5a+4\right)^2-a^2=\left(a^2+5a+a+4\right)\left(a^2+5a-a+4\right)=\left(a^2+6a+4\right)\left(a^2+4a+4\right)=\left(a^2+6a+4\right)\left(a+2\right)^2\)
a,9a^3-13a+6
=9a^3-6a^2+6a^2-4a-9a+6
=3a^2(3a-2)+2a(3a-2)-3(3a-2)
=(3a^2+2a-2)(3a-2)
1. Cần sửa lại thành \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)
Ta có : \(a^2+b^2+c^2-3=2\left(a+b+c\right)\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\Leftrightarrow\hept{\begin{cases}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\\\left(c-1\right)^2=0\end{cases}}\) \(\Leftrightarrow a=b=c=1\)
2. Cần sửa lại thành : \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)
Ta có : \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=3\left(ab+bc+ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\Leftrightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\) \(\Leftrightarrow a=b=c\)
3. Ta có : \(a+b+c=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\Leftrightarrow ab+bc+ac=\frac{-\left(a^2+b^2+c^2\right)}{2}=-\frac{1}{2}\)\(\Leftrightarrow\left(ab+bc+ac\right)^2=\frac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\frac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}\)
Lại có : \(1=\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(\Leftrightarrow a^4+b^4+c^4=1-2\left(a^2+b^2+c^2\right)=1-2.\frac{1}{4}=\frac{1}{2}\)
tài năng toán học hoàng lê bảo ngọc,tui công nhận bn 3 lần/ngày
\(\left(a-b\right)\left(a^4+a^3b+a^2b^2+ab^3+b^4\right)\)
\(=a\left(a^4+a^3b+a^2b^2+ab^3+b^4\right)\)
\(-b\left(a^4+a^3b+a^2b^2+ab^3+b^4\right)\)
\(=a^5+a^4b+a^3b+a^2b^3+ab^4\)
\(-a^4b-a^3b^2-a^2b^3-ab^4-b^5\)
\(=a^5-b^5\left(đpcm\right)\)
\(a^4+b^4-a^3b-ab^3=a^3\left(a-b\right)-b^3\left(a-b\right)=\left(a-b\right)\left(a^3-b^3\right)=\left(a-b\right)\left(a-b\right)\left(a^2+ab+b^2\right)=\left(a-b\right)^2\left(a^2+ab+b^2\right)\)
Có: \(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\\a^2+ab+b^2>0\end{matrix}\right.\)
\(\Rightarrow a^4+b^4-a^3b-ab^3\ge0\)
\(\Rightarrow a^4+b^4\ge a^3b+ab^3\)
Áp dụng BĐT cosi với 2 số không âm:
`a^4+b^4+b^4+b^4>=4\root4{a^4b^12}=4|ab^3|>=4ab^3`
Hoàn toàn tương tự:
`b^4+a^4+a^4+a^4>=4a^3b`
`=>a^4+b^4+b^4+b^4+b^4+a^4+a^4+a^4>=4ab^3+4a^3b`
`<=>4(a^4+b^4)>=4(ab^3+a^3b)`
`<=>a^4+b^4>=ab^3+a^3b`