Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a+b+c+d=0
nên b+c=-(a+d)
\(a^3+b^3+c^3+d^3\)
\(=\left(a+d\right)^3-3ad\left(a+d\right)+\left(b+c\right)^3-3bc\left(b+c\right)\)
\(=-\left(b+c\right)^3+3ad\left(b+c\right)+\left(b+c\right)^3-3bc\left(b+c\right)\)
\(=3ad\left(b+c\right)-3bc\left(b+c\right)\)
\(=\left(b+c\right)\left(3ad-3bc\right)\)
\(=3\left(b+c\right)\left(ad-bc\right)\)
\(1.a\left(a+2b\right)^3-b\left(2a+b\right)^3\)
=\(a\left(a^3+6a^2b+12ab^2+8b^3\right)-b\left(8a^3+12a^2b+6ab^2+b^3\right)\)
=\(a^4+6a^3b+12a^2b^2+8ab^3-8a^3b-12a^2b^2-6ab^3-b^4\)
=\(a^4-b^4\)=\(\left(a^2-b^2\right)\left(a^2+b^2\right)\)
1. Cần sửa lại thành \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)
Ta có : \(a^2+b^2+c^2-3=2\left(a+b+c\right)\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\Leftrightarrow\hept{\begin{cases}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\\\left(c-1\right)^2=0\end{cases}}\) \(\Leftrightarrow a=b=c=1\)
2. Cần sửa lại thành : \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)
Ta có : \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=3\left(ab+bc+ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\Leftrightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\) \(\Leftrightarrow a=b=c\)
3. Ta có : \(a+b+c=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\Leftrightarrow ab+bc+ac=\frac{-\left(a^2+b^2+c^2\right)}{2}=-\frac{1}{2}\)\(\Leftrightarrow\left(ab+bc+ac\right)^2=\frac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\frac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}\)
Lại có : \(1=\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(\Leftrightarrow a^4+b^4+c^4=1-2\left(a^2+b^2+c^2\right)=1-2.\frac{1}{4}=\frac{1}{2}\)
tài năng toán học hoàng lê bảo ngọc,tui công nhận bn 3 lần/ngày
Bài 1 :
Ta có : \(VP=\left(a+b\right)^4=\left(a+b\right)\left(a+b\right)^3\)
\(=\left(a+b\right)\left(a^3+3a^2b+3ab^2+b^3\right)=a^4+4a^3b+6a^2b^2+4ab^3+b^4\)
=> HĐT ko đc CM
Bài 2 :
a, \(\left(x-2\right)\left(x^2+2x+4\right)-\left(x-1\right)+7\)
\(=x^3+2x^2+4x-2x^2-4x-8-x+1+7=x^3-x=x\left(x^2-1\right)\)
Sửa đề : b, \(8\left(x-1\right)\left(x^2+x+1\right)-\left(2x-1\right)\left(4x^2+2x+1\right)\)
\(=8\left(x^3-1\right)-8x^3+1=8x^3-8-8x^3+1=-7\)
Xin phép chủ nahf cho mjnh sửa đề:D
\(\left(a+b\right)^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4\)
a,\(\left(a+b\right)^4\)
\(=\left[\left(a+b\right)^2\right]^2\)
\(=\left(a^2+2ab+b^2\right)^2\)
\(=\left[\left(a^2+2ab\right)+b^2\right]^2\)
\(=\left(a^2+2ab\right)^2+2\left(a^2+2ab\right)b^2+b^4\)
\(=a^4+4a^3b+4a^2b^2+2a^2b^2+4ab^3+b^4\)
\(=a^4+4a^3b+6a^2b^2+4ab^3+b^4\)
Bài 2:
a,\(\left(x-2\right)\left(x^2+2x+4\right)-\left(x-1\right)+7\)
\(=\left(x^3-8\right)-\left(x-1\right)+7\)
b,\(8\left(x-1\right)\left(x^2+x+1\right)-\left(2x-1\right)\left(4x^2+2x-1\right)\)
\(=8\left(x^3-1\right)-\left(8x^3-1\right)\)
\(=8x^3-8-8x^3+1\)
\(=-7\)
đặt 1/b =c
<=>
a^2 +c^2 =a^3 +c^3 (1)
a^2 +c^2 =a^4 +c^4 (2)
(1) <=> a^2 (1-a) =c^2 (c-1) (3)
(2) <=> a^2 (1-a^2) =c^2 (c^2 -1) <=> a^2 (1+a)(1-a) =c^2 (1+c)(c-1) ((4)
từ (3) và (4) =. 1+a =1+c => a=c
(2) trừ (1) <=> a^3 (a-1) +c^3 (c-1)=0
<=>(a^2-1)(a^2 -ac+c^2) =0
a^2 -ac+c^2 >0
=> a^2 =1
Thay vào (1) => a=1
kết luận
a =b=1
a) +) ab = 0, bđt đã cho luôn đúng
+) ab \(\ne0\), bđt đã cho tương đương:
a6 + b2a4 + b6 + a2b4 \(\ge a^6+b^6+2a^3b^3\)
\(\Leftrightarrow b^2a^4+a^2b^4\ge2a^3b^3\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\), luôn đúng
Dấu "=" xảy ra khi a = b
b) tương tự
a) (a2 + b2)(a4+b4) \(\ge\) (a3+b3)2
(=) a6 + a2b4+ b6 + b2a4\(\ge a^6+2a^3b^3+b^6\)
(=) \(a^6-a^6+b^6-b^6+a^2b^4+a^4b^2-2a^3b^3\ge0\)
(=)\(a^2b^4\left(a^2-2ab+b^2\right)\ge0\)
(=) \(a^2b^4\left(a-b\right)^2\ge0\)luôn luôn đúng
\(a+b=a^3+b^3=1\)
\(\Leftrightarrow a+b=\left(a+b\right)\left(a^2-ab+b^2\right)=1\)
\(\Leftrightarrow a^2-ab+b^2=1\)
\(\Leftrightarrow\left(a^2+2ab+b^2\right)-3ab=1\)
\(\Leftrightarrow\left(a+b\right)^2-3ab=1\)
\(\Leftrightarrow1-3ab=1\)
\(\Rightarrow ab=0\)
Ta có : \(\left(a+b\right)^2=1\)
\(\Leftrightarrow a^2+b^2+2ab=1\)
\(\Rightarrow a^2+b^2=1\) (1)
\(\Leftrightarrow\left(a^2+b^2\right)^2=a^4+b^4+2\left(ab\right)^2=1\)
\(\Rightarrow a^4+b^4=1\)(2)
Từ (1) ; (2) => đpcm
thank