Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Biến đổi VT ta có :
(a2-b2)2 + (2ab)2
= a4 -2a2+b4+4a2b2
= a4+2a2b2 +b4
= (a2b2)2 = VP (đpcm)
b) Biến đổi vế trái ta có :
(ax+b)2 + (a-bx)2+cx2+c2
= a2x2+2axb+b2 +a2 - 2axb+b2x2 +c2x2+ c2
= (a2+b2+c2) + x2(a2+b2+c2)
= (a2+b2+c2) (x2+1) = VP (đpcm)
\(1.a\left(a+2b\right)^3-b\left(2a+b\right)^3\)
=\(a\left(a^3+6a^2b+12ab^2+8b^3\right)-b\left(8a^3+12a^2b+6ab^2+b^3\right)\)
=\(a^4+6a^3b+12a^2b^2+8ab^3-8a^3b-12a^2b^2-6ab^3-b^4\)
=\(a^4-b^4\)=\(\left(a^2-b^2\right)\left(a^2+b^2\right)\)
B1:a2+b2+c2=ab+bc+ac tương đương 2(a2+b2+c2) - 2(ab+bc+ac) =0
suy ra 2a2 +2b2 +2c2 -2ab-2bc-2ac=0
suy ra (a2 -2ab+b2) +(b2-2bc+c2)+(a2-2ac+c2)=0
suy ra (a-b)2+(b-c)2+(a-c)2=0 suy ra (a-b)2=0 tương đương a-b=0 suy ra a=b (1)
(b-c)2=0 tương đương b-c=0 suy ra b=c (2)
(a-c)2 =0 tương đương a-c=0 suy ra b=c (3)
từ (1);(2);(3)suy ra a=b=c.Mà a=b=c=9 suy ra a=b=c=3(đpcm)
bai 1 : ve trai : a2 + b2 + c2 = a.a + b.b + c.c = (a.b) + (b.c) +(c.a) = ab + bc +ca = ve phai
ma a+b+c=9 suy ra : 3+3+3=9 suy ra a ;b;c deu bang 3
vi ve trai = ve phai ma a ;b ;c =3 vay dang thuc duoc chung minh
oh my dog toán lớp 8 đây á
mik làm đc hình như mỗi câu a thôi thì phải
2a2b2+ 2b2c2+ 2c2a2- a4- b4- c4
=4a2b2-(a4+2a2b2+b4)+(2b2c2+2a2c2)-c4
=2(ab)2-(a+b)2+2c2(a2+b2)-c4
=2(ab)2-[(a+b)2-2c2(a2+b2)+c4]
=2(ab)2-(b2+a2-c2)2
=(2ab+b2+a2-c2)(2ab-b2-a2+c2)
=[(a+b)2-c2][-(a-b)2+c2]
=(a+b-c)(a+b+c)(c-a+b)(a+c-b)
Vì a,b,c là 3 cạnh 1 tam giác nên:
a+b>c suy ra b+a-c>0
a+c>b suy ra a-b+c>0
a,b,c>0 suy ra a+b+c>0
b+c>a suy ra b+c-a>0
Vậy ta có điều phải chứng minh
đặt 1/b =c
<=>
a^2 +c^2 =a^3 +c^3 (1)
a^2 +c^2 =a^4 +c^4 (2)
(1) <=> a^2 (1-a) =c^2 (c-1) (3)
(2) <=> a^2 (1-a^2) =c^2 (c^2 -1) <=> a^2 (1+a)(1-a) =c^2 (1+c)(c-1) ((4)
từ (3) và (4) =. 1+a =1+c => a=c
(2) trừ (1) <=> a^3 (a-1) +c^3 (c-1)=0
<=>(a^2-1)(a^2 -ac+c^2) =0
a^2 -ac+c^2 >0
=> a^2 =1
Thay vào (1) => a=1
kết luận
a =b=1