Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề sai nhé, phải là :
\(3^{2n+1}+2^{n+2}⋮7\)
Ta có : \(9\equiv2\left(mod7\right)\Rightarrow9^n\equiv2^n\left(mod7\right)\)
\(\Rightarrow9^n.3+2^n.4\equiv2^n.3+2^n.4=2^n.\left(3+4\right)=2^n.7\equiv0\left(mod7\right)\)
Do đó : \(9^n.3+2^n.4⋮7\)
hay \(3^{2n+1}+2^{n+2}⋮7\) ( đpcm )
11^n+2 + 12^2n+1
= 121*11^n + 144^n*12
= (133-12)11^n + 144^n*12
= 133*11^n + 12*(144-11)
= 133*11^n + 12*133
= 133(11^n + 12) chia hết cho 133.
\(11^{n+2}+12^{2n+1}=11.2.11^n+12.1.12^{2n}\)
\(=121.11^n+12.144^n\)
\(\left(133-12\right).11^n+12.144^n\)
\(133.11^n+\left(144^n-11^n\right).12=133.11^n+133^n.12\)
133.11^n chia hết cho 133
133^n.12 chia hết cho 133
=> 11^n+2 + 12 ^2n+1 chia hết cho 133
Đặt A=11n+2+122n+1
Với n=0=> A=133 chia hết cho 133
Giả sử A chia hết cho 133 với n=k,tức là \(11^{k+2}+12^{2k+1}⋮133\left(k\in N\right)\)
Ta cần chứng minh A chia hết cho 133 với n=k+1
Với n=k+1 ta có:
\(A=11^{k+3}+12^{2k+3}=11^{k+2}.10+11^{k+2}+12^{2k+1}+12^{2k+1}.10+133.12^{2k+1}\)
\(A=11\left(11^{k+2}+12^{2k+1}\right)+133.12^{2k+1}\)
Ta có 11k+2+122k+1 chia hết cho 133 ( giả thiết quy nạp )
=> A chia hết cho 133 với n=k+1
Vậy \(11^{n+2}+12^{2n+1}⋮133\)
\(A=11^{n+2}+12^{2n+1}\)
\(=11^n.121+12^{2n}.12\)
\(=11^n\left(133-12\right)+144^n.12\)
\(=133.11^n-12.12^n+144^n.12\)
\(=133.11^n-12\left(144^n-11^n\right)\)
Vì \(133.11^n⋮133;144^n-11^n⋮\left(144-11\right)\Rightarrow144^n-11^n⋮133\)
\(\Rightarrow133.11^n-12\left(144^n-11^n\right)⋮133\) hay \(A⋮133\)