K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2017

có \(\sqrt{1}+\sqrt{2}\)

1+\(\sqrt{2}\)

mà \(\sqrt{2}\)là số vô tỉ

=>1+\(\sqrt{2}\)là số vô tỉ 

\(\sqrt{1}+\sqrt{2}\)là số vô tỉ

b, có\(\sqrt{3}\) là số vô tỉ

mà số hữu tỉ + số vô tỉ= số vô tỉ

=>m+\(\frac{\sqrt{3}}{n}\) là số vô tỉ

13 tháng 11 2017

giả sử \(m+\frac{\sqrt{3}}{n}=a\), a là số hữu tỉ. =>\(\frac{\sqrt{3}}{n}=a-m\)=>\(\sqrt{3}=n\left(a-m\right)\). Mà a,m,n là số hữu tỉ => \(\sqrt{3}\) là số hữu tỉ. mà \(\sqrt{3}\) là số vô tỉ => vô lí. => \(m+\frac{\sqrt{3}}{n}\) vô tỉ

27 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

8 tháng 6 2017

a, ta có:x-y=a/b - c/d

=> x - y = ad-bc/ bd=1/bd mà b,d,n>0=>bd>0=> 1/bd>0

=>x >y(1)

ta lại có y-z =cn-dm/dn=1/dn

mà b,d,n=> dn>0=> 1/dn >0

=>y>z(2)

từ (1) ,(2) =>x>y>z

còn ý b các bạn tự suy nghĩ nhé

chúc các bạn học giỏi

8 tháng 6 2017

ai trả lời zùm mình hết mình k cho 9 điểm

Ta có : \(\sqrt{2}\)là số vô tỉ

\(\sqrt{3}\)là số vô tỉ

\(\Rightarrow\sqrt{2}+\sqrt{3}\)là số vô tỉ ( đpcm ) 

b) tương tự :

 \(\hept{\begin{cases}\sqrt{2}vôti\\\sqrt{3}vôti\\\sqrt{5}vôti\end{cases}}\)

\(\Rightarrow\sqrt{2}+\sqrt{3}+\sqrt{5}\)vô tỉ

8 tháng 10 2019

c) \(\sqrt{2}\)là số vô tỉ nên \(1+\sqrt{2}\)là số vô tỉ

\(\Rightarrow\sqrt{1+\sqrt{2}}\)là số vô tỉ

d) \(\sqrt{3}\)là số vô tỉ\(\Rightarrow\frac{\sqrt{3}}{n}\)là số vô tỉ

\(\Rightarrow m+\frac{\sqrt{3}}{n}\)là số vô tỉ

17 tháng 10 2018

Đề thiếu điều kiện n là số tự nhiên nhé 

\(a)\)\(\sqrt{1+2+3+4+...+\left(n-1\right)+n+\left(n-2\right)+...+3+2+1}\)

\(=\)\(\sqrt{\frac{n\left(n-1\right)}{2}+n+\frac{n\left(n-1\right)}{2}}\)

\(=\)\(\sqrt{\frac{2n\left(n-1\right)}{2}+n}\)

\(=\)\(\sqrt{n\left(n-1\right)+n}\)

\(=\)\(\sqrt{n\left(n-1+1\right)}\)

\(=\)\(\sqrt{n^2}\)

\(=\)\(\left|n\right|\)

Mà n là số tự nhiên nên \(n\ge0\)\(\Rightarrow\)\(\left|n\right|=n\)

Vậy \(\sqrt{1+2+3+4+...+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}=n\) ( đpcm ) 

Chúc bạn học tốt ~ 

2 tháng 12 2018
https://i.imgur.com/b5F4Q5S.jpg