K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2016

Gọi d là ƯCLN ( 2n - 1 ; 2n - 2 )

=> 2n - 1 ⋮ d

=> 2n - 2 ⋮ d

=> [ ( 2n - 2 ) - ( 2n - 1 ) ] ⋮ d

=> 2 - 1 ⋮ d

=> 1 ⋮ d => d = 1

Vì ƯCLN ( 2n - 1 ; 2n - 2 ) = 1 nên 2n-1/2n-2 là phân số tối giản

Ccs câu sau làm tương tự

2 tháng 1 2017

Gọi UCLN(n+1,2n+3) = d

=> n + 1 chia hết cho d => 2(n + 1) chia hết cho d => 2n + 2 chia hết cho d

     2n + 3 chia hết cho d

=> 2n + 3 - (2n +  2) chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> UCLN(n+1,2n+3) = 1

Vậy \(\frac{n+1}{2n+3}\) là phân số tối giản

Gọi UCLN(2n+1,2n+3) = d

=> 2n+1 chia hết cho d

     2n+3 chia hết cho d

=> 2n+3 - (2n+1) chia hết cho d

=> 2 chia hết cho d

=> d \(\in\){1;2}

Vì 2n+1 lẻ nên d = 1

=>UCLN(2n+1,2n+3) = 1

Vậy \(\frac{2n+1}{2n+3}\) là phân số tối giản

22 tháng 1 2017

ai đúng cho tích

29 tháng 4 2017

Gọi d là ƯCLL(2n+3,4n+8).

2n+3 \(⋮\)d \(\Rightarrow\)4n+9 \(⋮\)d

4n+8 \(⋮\)d

\(\Rightarrow\)(4n+9)-(4n+8) \(⋮\)d

\(\Rightarrow\)1 \(⋮\)d

Vì ƯCLL(2n+3,4n+8)= 1 nên 2n+3/4n+8 là phân số tối giản

tk mình nha

29 tháng 4 2017

Goi d la UCLN(2n+3 , 4n+8)

\(\Rightarrow2n+3⋮d\)

\(4n+8⋮d\)

\(\Rightarrow2\left(2n+3\right)⋮d\)

\(4n+8⋮d\)

\(\Rightarrow4n+6⋮d\)

\(4n+8⋮d\)

\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\in U\left(1,2\right)\)

Ma \(2n+3\) la so le

\(\Rightarrow d=1\)

\(\Rightarrow\frac{2n+3}{4n+8}la\) p/s toi gian voi moi n \(\in\)N

25 tháng 4 2018

Gọi d là ƯCLN (2n+5; n+3)

\(\Rightarrow\hept{\begin{cases}2n+5⋮d\\n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n+5⋮d\\2\left(n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+5⋮d\\2n+6⋮d\end{cases}}}\)

\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=\left\{\pm1\right\}\)

Vậy \(\frac{2n+5}{n+3}\)là phân số tối giản (đpcm)

25 tháng 4 2018

Giải:

-Gọi ƯCLN(n+3,2n+5)=d

=>n+3 chia hết cho d =>2(n+3)=2n+6 chia hết cho d

=>2n+5 chia hết cho d

=>2n+6-2n+5=1 chia hết cho d

=>d=1.

=>n+3 và 2n+5 là hai số nguyên tố cùng nhau.

=> 2n+5/n+3 là phân số tối giản.

11 tháng 7 2017

Gọi d là ƯCLN của n + 1 và 2n + 3

Khi đó : n + 1 chia hết cho d , 2n + 3 chia hết cho d

<=>  2(n + 1) chia hết cho d , 2n + 3 chia hết cho d

<=>  2n + 2 chia hết cho d , 2n + 3 chia hết cho d

=> (2n + 3) - (2n + 2) chia hết cho d

=> 1 chia hết cho d

Vậy \(\frac{n+1}{2n+3}\) là phân số tối giản

11 tháng 7 2017

a,Gọi d là ƯCLN của n+1 và 2n+3(d thuộc Z/ d khác 0)

=> n+1 chia hết cho d; 2n+ 3 chia hết cho d

=>(n+1)-(2n+3) chia hết cho d

=>1chia hết cho d=> d thuộc Ư của 1

=.> \(\frac{n+1}{2n+3}\)là ps tối giản

b, Gọi d là ƯCLN (2n+3;4n+8)(d thuộc Z/ d khác 0)

=>2n+3 chia hết cho d;4n+8 chia hết cho d

=>(2n+3)-(4n+8) chia hết cho d

=>(2n+3)-(2n+4) chia hết cho d

=>-1 chia hết cho d

=>\(\frac{2n+3}{4n+8}\)là ps tối giản