K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2014

S=5+5^2+5^3+5^4.....+5^99+5^100

S=(5.1+5.5)+(5^3.1+5^3.5)+...+(5^99.1+5^99.5)

S=5.(1+5)+5^3.(1+5)+...+5^99.(1+5)

 S=6.(5+5^3+...+5^99) chia hết cho 6

 

 

24 tháng 10 2019

minh dang can gap

18 tháng 8 2016

A=1+32+34+36+....+3100

=>9A=32+34+36+38+....+3102

=>8A=3102-1

=>A=3102-1/8

b)A=1+53+56+59+.....+599

125A=53+56+59+512+.....+5102

124A=5102-1

A=5102-1/124

BT3:

1+4+42+43+...+458+459

=>(1+4)+(42+43)+...........+(458+459)chia hết cho 5

=>5+42.5+...........+458.5 chia hết cho 5 

2)1+4+42+43+........+458+459

=>(1+4+42)+(43+44+45)+..........+(457+458+459)

=>21+43.21+........+457.24 chia hết cho 21

3)1+4+42+43+..........+458+459

=>(1+4+42+43)+(44+45+46+47)+............+(456+457+458+459)

=>85+44.85+..........+456.85 chia hết cho 85

4)5+53+55+.........+5202+5203 ( đề sai vì ta thấy 53 tới 55 mà 5202 tới 5203)

 

 

18 tháng 8 2016

bạn ra từ từ thui

==

24 tháng 10 2018

\(S1=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)

\(=5.\left(1+5\right)+5^3.\left(1+5\right)+...+5^{99}.\left(1+5\right)\)

\(=5.6+5^3.6+...+5^{99}.6\)

\(=6.\left(5+5^3+...+5^{99}\right)⋮6\)

câu b tương tự

\(S3=16^5+21^5\)

vì 16+21=33 chia hết cho 33

=>165+215 chia hết cho 33

P/S: theo công thức:(n+m chia hết cho a=> nb+mchia hết cho a)

S1 = 5+52+53+...+599+5100

=5. (1+5)+53 . (1+5) + ... + 599.(1+5)

= 5.6 +53.6+..+ 599.6

=6.(5+53 + ... +599):6

vậy x = ...

b)2+22+23+...+299+2100

=2.(1+2)+23.(1+2) + ... + 299.(1+2)

=2.3+23+..+299):3

= ....

c)165+215

vì 16+21 chia hế 33 nên

theo công thức(n+m chia hết cho a=(nb+mb)

7 tháng 12 2014

a) =(4+42)+(43+44)+...+(499+4100)

=4.(1+4)+43.(1+4)+...+499.(1+4)

=4.5+43.5+...+499.5

=5.(4+43+...+499) chia hết cho 5

vậy 4+42+43+...+499+4100 chia hết cho 5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

19 tháng 11 2018

S=1+5+52+53+...+599+5100    Có 101 SH

=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{98}+5^{99}\right)+5^{100}=(1+5)+(52+53)+...+(598+599)+5100

=6+5^2\left(1+5\right)+...+5^{98}\left(1+5\right)+5^{100}=6+52(1+5)+...+598(1+5)+5100

=6.\left(1+5^2+...+5^{98}\right).6+5^{100}=6.(1+52+...+598).6+5100

Vì 6 ⋮⋮3 và 1 + 52+ ..... + 598 ⋮⋮3

nên 6 .  (1 + 52+ ..... + 598) ⋮⋮3.

mà 5 \(⋮̸\)3 \Rightarrow⇒5100\(⋮̸\)3. \Rightarrow⇒=6.\left(1+5^2+...+5^{98}\right).6+5^{100}=6.(1+52+...+598).6+5100\(⋮̸\)3.

Vậy S \(⋮̸\)3

19 tháng 11 2018

\(S=1+5+5^2+5^3+...+5^{99}+5^{100}\)    Có 101 SH

   \(=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{98}+5^{99}\right)+5^{100}\)

    \(=6+5^2\left(1+5\right)+...+5^{98}\left(1+5\right)+5^{100}\)

     \(=6.\left(1+5^2+...+5^{98}\right).6+5^{100}\)

Vì 6 \(⋮\)3 và 1 + 52+ ..... + 598 \(⋮\)3

nên 6 .  (1 + 52+ ..... + 598\(⋮\)3.

mà 5 \(⋮̸\)\(\Rightarrow\)5100\(⋮̸\)3. \(\Rightarrow\)\(=6.\left(1+5^2+...+5^{98}\right).6+5^{100}\)\(⋮̸\)3.

Vậy S \(⋮̸\)3

14 tháng 2 2018

\(a)\) Đặt \(A=5+5^2+5^3+5^4+...+5^{99}+5^{100}\)ta có : 

\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)

\(A=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{99}\left(1+5\right)\)

\(A=5.6+5^3.6+...+5^{99}.6\)

\(A=6.\left(5+5^3+...+5^{99}\right)\) \(⋮\) \(6\)

Vậy \(A⋮6\)

14 tháng 2 2018

\(b)\) Đặt \(B=2+2^2+2^3+2^4+...+2^{99}+2^{100}\) ta có : 

\(B=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(B=2\left(1+2+4+8+16\right)+...+2^{96}\left(1+2+4+8+16\right)\)

\(B=2.31+...+2^{96}.31\)

\(B=31.\left(2+2^6+...+2^{96}\right)\) \(⋮\) \(31\)

Vậy \(B⋮31\)

Năm mới zui zẻ ^^