Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\) Đặt \(A=5+5^2+5^3+5^4+...+5^{99}+5^{100}\)ta có :
\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)
\(A=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{99}\left(1+5\right)\)
\(A=5.6+5^3.6+...+5^{99}.6\)
\(A=6.\left(5+5^3+...+5^{99}\right)\) \(⋮\) \(6\)
Vậy \(A⋮6\)
\(b)\) Đặt \(B=2+2^2+2^3+2^4+...+2^{99}+2^{100}\) ta có :
\(B=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(B=2\left(1+2+4+8+16\right)+...+2^{96}\left(1+2+4+8+16\right)\)
\(B=2.31+...+2^{96}.31\)
\(B=31.\left(2+2^6+...+2^{96}\right)\) \(⋮\) \(31\)
Vậy \(B⋮31\)
Năm mới zui zẻ ^^
a) S = 5 + 52 + 53 + ... + 5100
=> S = ( 5 + 52 ) + ( 53 + 54 ) + ... + ( 599 + 5100 )
=> S = 5( 1 + 5 ) + 53( 1 + 5 ) + ... + 599( 1 + 5 )
=> S = 5 . 6 + 53 . 6 + ... + 599 . 6
=> S = ( 5 + 53 + ... + 599 ) . 6 chia hết cho 6
=> S chia hết cho 6
b) S1 = 2 + 22 + 23 + ... + 2100
=> S1 = ( 2 + 22 + 23 + 24 + 25 ) + ... + ( 296 + 297 + 298 + 299 + 2100 )
=> S1 = 2( 1 + 2 + 22 + 23 + 24 ) + ... +296( 1 + 2 + 22 + 23 + 24 )
=> S1 = 2 . 31 + ... + 296 . 31
=> S1 = ( 2 + ... + 296 ) . 31 chia hết cho 31
=> S1 chia hết cho 31
c) S2 = 165 + 215
=> S2 = ( 24 )5 + 215
=> S2 = 220 + 215
=> S2 = 220( 1 + 25 )
=> S2 = 220 . 33 chia hết cho 33
=> S2 chia hết cho 33
a) Đặt A= \(1+2+2^2+...+2^7=\left(1+2\right)\left(2^2+2^3\right)+...+\left(2^6+2^7\right)\)
\(=3+2^2\left(1+2\right)+...+2^6\left(1+2\right)\)
\(=3\left(1+2^2+...+2^6\right)\)
Vậy A chia hết ho 3
Câu b,c tương tư
\(S_2=2+2^2+2^3+2^4+.........+2^{99}+2^{100}\)
\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+.....+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\left(2+2^2+2^3+2^4\right)+2^5\left(2+2^2+2^3+2^4\right)+......+2^{97}\left(2+2^2+2^3+2^4\right)\)
\(=2.31+2^5.31+......+2^{97}.31\)
\(=31\left(2+2^5+....+2^{97}\right)⋮31\left(đpcm\right)\)
1, Đặt \(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=31+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(=31+...+2^{96}.31\)
\(=31\left(1+...+2^{96}\right)\)
\(\Rightarrow A⋮31\)
2, Đề sai nhé, tớ sửa lại.
\((16^5+2^{15})⋮33\)
\(=\left(2^4\right)^5+2^{15}\)
\(=2^{20}+2^{15}\)
\(=2^{15}\left(2^5+1\right)\)
\(=2^{15}.33\)
\(\Rightarrow16^5+2^{15}⋮33\)
1) Ta có 2 + 22 + 23 + ... + 2100
= (2 + 2 + 23 + 24 + 25) + (26 + 27 + 28 + 29 + 210) + ... +(296 + 297 + 298 + 299 + 2100)
= (2 + 22 + 23 + 24 + 25) + 25.(2 + 22 + 23 + 24 + 25) + ... + 296 .(2 + 22 + 23 + 24 + 25)
= 62 + 25 .62 + ... + 296 . 62
= 62.(1 + 25 + ... +296)
= 31.2.(1 + 25 + ... +296) \(⋮\)31
=> 2 + 22 + 23 + ... + 2100 \(⋮\)31
Câu 2 hình như đề sai
mk thử số rồi , đề sai
1. D = ( 5 + 5^2 ) + ... + ( 5^99 + 5^100 )
D = 5 ( 1 + 2 ) + ... + 5^99 ( 1 + 2 )
D = 5 . 6 + ... + 5^99 . 6
D = 6 ( 5 + ... + 5^99 ) chia hết cho 6 ( đpcm )
2. gợi ý : nhóm 5 số vào một
3. Đề phải là 165 - 215
165 - 215
= (24)5 - 215
= 220 - 215
= 215 ( 25 - 1 )
= 215 . 31 chia hết cho 31
4. đề sai
\(S1=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)
\(=5.\left(1+5\right)+5^3.\left(1+5\right)+...+5^{99}.\left(1+5\right)\)
\(=5.6+5^3.6+...+5^{99}.6\)
\(=6.\left(5+5^3+...+5^{99}\right)⋮6\)
câu b tương tự
\(S3=16^5+21^5\)
vì 16+21=33 chia hết cho 33
=>165+215 chia hết cho 33
P/S: theo công thức:(n+m chia hết cho a=> nb+mb chia hết cho a)
S1 = 5+52+53+...+599+5100
=5. (1+5)+53 . (1+5) + ... + 599.(1+5)
= 5.6 +53.6+..+ 599.6
=6.(5+53 + ... +599):6
vậy x = ...
b)2+22+23+...+299+2100
=2.(1+2)+23.(1+2) + ... + 299.(1+2)
=2.3+23+..+299):3
= ....
c)165+215
vì 16+21 chia hế 33 nên
theo công thức(n+m chia hết cho a=(nb+mb)