Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) \(x^2-6x+10\)
\(=x^2+6x+9+1\)
\(=\left(x+3\right)^2+1\)
Vì \(\left(x+3\right)^2\ge0\forall x\)
Nên \(\left(x+3\right)^2+1\ge1\forall x\)
Vậy \(\left(x+3\right)^2+1>0\forall x\).
b) \(4x-x^2-5\)
\(=-x^2+4x-4-1\)
\(=-\left(x^2-4x+4\right)-1\)
\(=-\left(x+2\right)^2-1\)
Vì \(-\left(x-2\right)^2\le0\forall x\)
Nên \(-\left(x+2\right)^2-1\le-1\forall x\)
Vậy \(-\left(x+2\right)^2-1< 0\forall x\).
Chúc bạn học tốt!
\(\text{a) }x^2-6x+10\\ =x^2-6x+9+1\\ =\left(x^2-6x+9\right)+1\\ =\left(x^2-2\cdot x\cdot3+3^2\right)+1\\ =\left(x-3\right)^2+1\\ \text{Ta có : }\left(x-3\right)^2\ge0\forall x\\ \Rightarrow\left(x-3\right)^2+1\ge1\forall x\\ \Rightarrow\left(x-3\right)^2+1>0\forall x\left(đpcm\right)\\ \text{Vậy biểu thức luôn nhận giá trị dương }\forall x\)
\(\text{b) }4x-x^2-5\\ =-x^2+4x-4-1\\ =-\left(x^2-4x+4\right)-1\\ =-\left(x^2-2\cdot x\cdot2+2^2\right)-1\\ =-\left(x-2\right)^2-1\\ \text{Ta có : }\left(x-2\right)^2\ge0\forall x\\ \Rightarrow-\left(x-2\right)^2\le0\forall x\\ \Rightarrow-\left(x-2\right)^2-1\le-1\forall x\\ \Rightarrow-\left(x-2\right)^2-1< 0\forall x\left(đpcm\right)\\ \text{Vậy biểu thức luôn nhận giá trị âm }\forall x\)
x2-6x+10
=x2-6x+9+1
=(x-3)2+1>0 với mọi x (vì (x-3)2\(\ge\)0 với mọi x)
4x-x2-5
= -x2+4x-4-1
= -(x2-4x+4)-1
= -(x-2)2-1<0 với mọi x(vì -(x-2)2<0 với mọi x)
a) \(x^2\) − 6x + 10
= ( \(x^2\) − 6x + 9) + 1
= \(\left(x-3\right)^2\) + 1
Ta thấy : \(\left(x-3\right)^2\) \(\ge\) 0
\(\left(x-3\right)^2\) + 1 > 0 với mọi x
b) \(4x-x^2\) − 5
= − ( − 4 + \(x^2\)+ 5)
= − ( \(x^2\) − 4x + 5)
= − (\(x^2\) − 4x + 4 +1)
= − (x − 2) \(^2\) − 1
Ta thấy : − (x − 2)\(^2\) \(\le\) 0
− (x − 2)\(^2\) − < 0 với mọi x
\(x^2\)\(x^2\)\(x^2\)
a) \(x^2-6x+10\\ =x^2-6x+9+1\\ =\left(x-3\right)^2+1\)
Ta xét thấy: \(\left(x-3\right)^2\ge0\forall x\\ =>\left(x-3\right)^2+1>0\forall x\)
b) \(4x-x^2-5\\ =-\left(x^2-4x+5\right)\\ =-\left(x^2-4x+4+1\right)\\ =-\left(x-2\right)^2-1\)
Ta xét thấy:
\(-\left(x-2\right)^2\le0\forall x\\ =>-\left(x-2\right)^2-1< 0\forall x\)
a) \(x^2-6x+10=x^2-2.3x+3^2+1=\left(x-3\right)^2+1\)
Vì \(\left(x-3\right)^2\ge0\) nên \(\left(x-3\right)^2+1>0\) với mọi x
b) \(4x-x^2-5=-x^2+4x-2^2-1=-\left(x^2-2.2x+2^2\right)-1=-\left(x-2\right)^2-1\)
Vì \(-\left(x-2\right)^2\le0\) nên \(-\left(x-2\right)^2-1< 0\) với mọi x
x^2-6x+10
=x^2-6x+9+1
=x^2-6x+3^2+1
=(x-3)^2+1
ta có: (x-3)^2 >hoặc = 0 với mọi x
=>(x-3)^2+1>hoặc =0+1 >0 với mọi x
chắc chắn đúng luôn nhớ li-ke cho minh nha
\(x^2-6x+10=x^2-6x+9+1=\left(x+3\right)^2+1\)
Vì \(\left(x-3\right)^2\ge0\) => \(\left(x-3\right)^2+1>0\) với mọi x
=> \(x^2-6x+10>0\) (ĐPCM)
a) x2-6x+10>0
<=>x2-6x+9+1>0
<=>(x-3)2+1>0(đúng với mọi x)
vậy x2-6x+10>0 với mọi x
b)x2-2x+y2+4y+6>0
<=>x2-2x+1y2+4y+4+1>0
<=>(x-1)2+(y+2)2+1>0 (với mọi x,y)
Vậy x2-2x+y2+4y+6>0 với mọi x,y
a) \(x^2-6x+10=x^2-2.3x+3^2+1=\left(x-3\right)^2+1\)
Mà \(\left(x-3\right)^2\ge0\) nên \(\left(x-3\right)^2+1>0\)
hay \(x^2-6x+10>0\left(đpcm\right)\)
b) \(4x-x^2-5=-\left(x^2-4x\right)-5=-\left(x^2-4x+4\right)+4-5\)
\(=-\left(x-2\right)^2-1\)
Vì \(-\left(x-2\right)^2\le0\forall x\)nên \(-\left(x-2\right)^2-1< 0\)
hay \(4x-x^2-5< 0\left(đpcm\right)\)
a) Ta có:
\(x^2-6x+10=x^2-6x+9+1\) 1
\(=\left(x-3\right)^2+1\)
vì \(\left(x-3\right)^2\ge0\forall x\in R\) ;1>0
\(\Rightarrow\left(x-3\right)^2+1\ge1\forall x\in R\)
=>đpcm
b)
\(4x-x^2-5=-\left(x^2-4x+4\right)-1\)
\(=-\left(x-2\right)^2-1\)
vì:\(-\left(x-2\right)^2\le0\forall x\in R\) ;-1<0
=>..........
vậy...
hc tốt
\(=x^2+4x+4+2=\left(x+2\right)^2+2\)
Vì \(\left(x+2\right)^2\ge0\)
\(\left(x+2\right)^2+2\ge0\)
Dấu"=" xảy ra khi x+2=0
\(\Leftrightarrow\) x= -2
Câu b chứng minh giống trên nha
a) \(x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1\ge1>0\forall x\)
b) \(-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)\)
\(=-\left(x+2\right)^2-1\le-1\le0\forall x\)
(đpcm)
chứng tỏ rằng:
4x-x^2-5<0 với mọi x
\(x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1\ge1>0\)