K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2017

a/ (3n)100=(3n)4.25=(81n)25 chia hết cho 81.

b/ tao biết mà tự làm đi dễ lắm

c/ dựa vào dấu hiệu chia hết cho 9

22 tháng 12 2017

b)  \(\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+.........+\left(3^{28}+3^{29}+3^{30}\right)\)

      \(3\left(13\right)+3^4\left(13\right)+..........+3^{28}\left(13\right)\)

        \(13\left(3+3^4+.........+3^{28}\right)⋮13\)

c/ \(10^{2015}+17\)

    \(10^{2015}+17=1000.........00000000+17\)

                              \(=10000......0000017\)

                                \(1+0+0+0+0+....0+1+7=9⋮9\)

         

1 tháng 11 2017

trả lời giúp mk với

20 tháng 11 2017

a bằng 14

b bằng 26

c bằng 15

17 tháng 10 2017

a/ \(10^5+8=\left(100....0\right)+8=\left(100...8\right)⋮9\) \(\left(đpcm\right)\) (tổng các c/s chia hết cho 9)

b/ \(10^{2015}+2\left(100.....0\right)+2=\left(100....2\right)⋮3\left(đpcm\right)\) (tổng các c/c chia hết cho 3)

c/ \(10^n+11=\left(100...0\right)+11=\left(100.....011\right)⋮3\) (tổng các c/s chia hết cho 3)

d/ \(10^n+17=\left(100.....0\right)+17=\left(100...017\right)⋮3;9\) (tổng các c/s chia hết cho 3,9)

e/ \(10^n-1=\left(100....0\right)-1=\left(999.....99\right)⋮3;9\)

17 tháng 10 2017

Làm thế khó nhìn. Em làm vầy dễ thấy hơn nè.

a/ \(10^5+8=\left(100000-1\right)+\left(8+1\right)=99999+9⋮9\)

b/ \(10^{2015}+2=\left(10...0-1\right)+\left(2+1\right)=\left(99...9\right)+3⋮3\)

c/ \(10^n+11=\left(100...0-1\right)+\left(11+1\right)=99...9+12⋮3\)

d/ \(10^n+17=\left(100...0-1\right)+\left(17+1\right)=99...9+18⋮3\)

\(10^n+17=\left(100...0-1\right)+\left(17+1\right)=99...9+18⋮9\)

Thế này dễ nhìn hơn e.

AH
Akai Haruma
Giáo viên
8 tháng 7 2018

Bài 1)

a) Ta có: \(A=m^2+m+1=m(m+1)+1\)

Vì $m,m+1$ là hai số tự nhiên liên tiếp nên tích của chúng chia hết cho $2$ hay $m(m+1)$ chẵn

Do đó $m(m+1)+1$ lẻ nên $A$ không chia hết cho $2$

b)

Nếu \(m=5k(k\in\mathbb{N})\Rightarrow A=25k^2+5k+1=5(5k^2+k)+1\) chia 5 dư 1

Nếu \(m=5k+1\Rightarrow A=(5k+1)^2+(5k+1)+1=25k^2+15k+3\) chia 5 dư 3

Nếu \(m=5k+2\Rightarrow A=(5k+2)^2+(5k+2)+1=25k^2+25k+7\) chia 5 dư 2

Nếu \(m=5k+3\Rightarrow A=(5k+3)^2+(5k+3)+1=25k^2+35k+13\) chia 5 dư 3

Nếu \(m=5k+4\) thì \(A=(5k+4)^2+(5k+4)+1=25k^2+45k+21\) chia 5 dư 1

Như vậy tóm tại $A$ không chia hết cho 5

AH
Akai Haruma
Giáo viên
8 tháng 7 2018

Bài 2:

a) \(P=2+2^2+2^3+...+2^{10}\)

\(=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^9+2^{10})\)

\(=2(1+2)+2^3(1+2)+2^5(1+2)+..+2^9(1+2)\)

\(=3(2+2^3+2^5+..+2^9)\vdots 3\)

Ta có đpcm

b) \(P=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^{10})\)

\(=2(1+2+2^2+2^3+2^4)+2^6(1+2+2^2+2^3+2^4)\)

\(=(1+2+2^2+2^3+2^4)(2+2^6)=31(2+2^6)\vdots 31\)

Ta có dpcm.

20 tháng 9 2019

a)Các số tự nhiên chia hết cho 9 là :450;405;540;504

b)Chia hết cho 3 mà ko chia hết cho 9:345;354;453;435;543;534

22 tháng 3 2015

bai 1 ta co ab-ba=10a+b-10b-b=(10a-a)-(10b-b)=9a-9b=9.(a-b). vi 9.(a-b) chia het cho 9 suy ra (ab-ba) chia het cho 9 voi a>b (dpcm)                                                                                                                                                                                                                       

2 tháng 8 2016

ban tran xuan quynh tra loi dung roi