Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{1}{101}>\frac{1}{200}\)
\(\frac{1}{102}>\frac{1}{200}\)
\(...>\frac{1}{200}\)
Mà \(\frac{1}{200}=\frac{1}{200}\)
Suy ra : \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}>\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\)
Mời nhân tài giải nốt.
\(A< \frac{1}{99.100}+\frac{1}{100.101}+...+\frac{1}{198.199}=\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}+...+\frac{1}{198}-\frac{1}{199}\)
=> \(A< \frac{1}{99}-\frac{1}{199}< \frac{1}{99}\)
Lại có:
\(A>\frac{1}{100.101}+\frac{1}{101.102}+...+\frac{1}{199.200}=\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+...+\frac{1}{199}-\frac{1}{200}\)
=> \(A>\frac{1}{100}-\frac{1}{200}=\frac{1}{200}\)
=> 1/100 < A < 1/99
cái này dễ lắm chỉ là chưa để ý thôi:
a,1/101>1/102>...>1/199>1/200
=>1/101+1/102+...+1/199+1/200<100*1/101=100/101<1
các phần khác làm tương tự
đánh mỏi tay quá duyệt luôn đi
Đề sai à bạn
\(\frac{1}{100}+\frac{1}{101}+..+\frac{1}{200}< \frac{1}{100}+\frac{1}{101}+\frac{1}{101}+..+\frac{1}{101}\) (100 số 1/101)
\(< \frac{1}{100}+\frac{1}{101}.100=\frac{1}{100}+\frac{100}{101}\)
vì \(\frac{1}{100}+\frac{100}{101}< \frac{1}{100}+\frac{99}{100}=1\)
mà \(\frac{1}{100}+\frac{1}{101}+..+\frac{1}{200}< \frac{1}{100}+\frac{100}{101}\)
\(\Rightarrow\frac{1}{100}+\frac{1}{101}+..+\frac{1}{200}< 1\)(ĐPCM)