Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho S = 1/21 + 1/22 + 1/23 +... + 1/60
S1=1/21 + 1/22 +..+ 1/40 (20 số hạng); S2= 1/41 + 1/42 +... + 1/60 (20 số hạng)
* Ta thấy: S1 > 1/40 x 20 = 1/2 (vì 1/40 = 1/40, 19 số hạng kia đều lớn hơn 1/40); S2 > 1/60 x 20 = 1/3
\(\Rightarrow\)S > 1/2 + 1/3 = 5/6 = 25/30 > 22/30 = 11/15
Vậy 1/21 + 1/22 + ... + 1/60 > 11/15
* Ta thấy: S1 < 1/21 x 20 = 20/21(vì 1/20 = 1/20, 19 số hạng còn lại đều bé hơn 1/21); S2 < 1/41 x 20 = 20/41
\(\Rightarrow\)S < 20/21 + 20/41 = 1240/861 < 3/2 (đoạn này thì bạn phải dùng máy tính chứ mik ko bt tính nhanh kiểu j)
Ta có đpcm
a,1/51 > 1/100
1/52 > 1/100
1/53 > 1/100
...
1/100=1/100
=>H>1/100 + 1/100 + 1/100 +...+1/100
H>50/100=1/2
1/51<1/50
1/52<1/50
....
1/100<1/50
=>H<1/50+1/50+...+1/50
H<50/50=1
Vay1/2<H<1
Đặt A=1/21+1/22+...+1/60=(1/21+1/22+...+1/40)+(1/41+1/42+...+1/60)
Ta có:1/21>1/40, 1/22>1/40,..., 1/39>1/40
=>1/21+1/226+...+1/40>1/40+1/40+...+1/40=1/40.20=1/2
1/41>1/60, 1/42>1/60,...,1/59>1/60
=>1/41+1/42+...+1/60>1/60+1/60+...+1/60=1/60.20=1/3
=>1/21+1/22+...+1/60>1/2+1/3=5/6>11/15
=>A>11/15 (1)
Lại có: 1/21<1/20, 1/22<1/20,...,1/40<1/20
=>1/21+1/22+...+1/40<1/20+1/20+...+1/20=1/20.20=1
1/41<1/40, 1/42<1/40,...,1/60<1/40
=>1/41+1/42+...+1/60<1/40+1/40+...+1/40=1/40.20=1/2
=>1/21+1/22+...+1/60<1+1/2=3/2
=>A<3/2 (2)
Từ (1) và (2)
=>11/15<A<3/2
=>11/15<1/21+1/22+...+1/60<3/2 (đpcm)
1/1002 + 1/1012 + ... + 1/1992 < 1/99.100 + 1/100.101 + ... + 1/198.199 = 1/99 - 1/100 + 1/100 - 1/101 + ... + 1/198 - 1/199 = 1/99 - 1/199
\(\Rightarrow\)Vậy 1/1002 + 1/1012 + ... + 1/1992 < 1/99 (vì 1/99 đã lớn hơn 1/99 - 1/199 rồi mà G lại còn bé hơn 1/99 - 1/199 nữa)
1/1002 + 1/1012 + ... + 1/1992 > 1/100.101 + ... + 1/199.200 = 1/100 - 1/101 + ... + 1/199 - 1/200 = 1/100 - 1/200 = 1/200
\(\Rightarrow\)Vậy 1/1002 + 1/1012 + ... + 1/1992 > 1/200