K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2016
a) 15n + 1/ 30n + 1 goi ucln cua 15n + 1/ 30n +1 la d ={15n + 1 hcia het cho d 30n + 1 chia het cho d 15n + 1 chia het cho d suy ra 4 (15n+ 1) chia het cho d (1) 30n +1 chia het cho d suy ra 2 ( 30n +1 ) (2) tu (1) va (2) theo t/c chia het mot hieu ta co 4(15n + 1)- 2(30n+1)chia het cho d 60n -4 - 60n - 2chia het cho d suy ra 1 chia het cho d suy ra d=1 vay d=1 nen UCLN( 15n +1, 30n +1) =1 vay phan so do la phan so toi gian
21 tháng 2 2016

a ) Gọi d là ƯC ( 15n + 1 ; 30n + 1 )

=> 15n + 1 ⋮ d => 2.( 15n + 1 ) ⋮ d => 30n + 2 ⋮ d

=> 30n + 1 ⋮ d => 1.( 30n + 1 ) ⋮ d => 30n + 1 ⋮ d

=> [ ( 30n + 2 ) - ( 30n + 1 ) ] ⋮ d

=> 1 ⋮ d => d = 1 

Vì ƯC ( 15n + 1 ; 30n + 1 ) = 1 nên 15n+1/30n+1 là p/s tối giản

21 tháng 2 2016

a)Gọi ước chung lớn nhất của 15n + 1 và 30n + 1 là d (d thuộc N*) 
=> 15n + 1 chia hết cho d 
30n + 1 chia hết cho d 
=> 2(15n + 1) chia hết cho d 
1(30n + 1) chia hết cho d 
=> 30n + 2 chia hết cho d 
30n + 1 chia hết cho d 
=>(30n + 2) - (30n + 1) chia hết cho d 
=> 1 chia hết cho d 
Do d thuộc N* 
=> d=1 
=>Ước chung lớn nhất của 15n + 1 và 30n + 1 là 1 
=> 15n +1 và 30n + 1 là 2 số nguyên tố cùng nhau 
=>15n + 1/30n + 1 là phân số tối giản với n thuộc N (điều phải chứng minh) 
Cho mình 5* pn nké.Hì.Thân.Chúc học giỏi

28 tháng 2 2018

\(\frac{15n+1}{30n+1}\)

Gọi ƯCLN ( 15n + 1 ; 30n + 1 ) = d

Ta có :

15n +  1 \(⋮\)d ; 30n + 1 \(⋮\)d

=> 2 ( 15n + 1 ) \(⋮\)d

=> 30n + 2 \(⋮\)d

=> ( 30n + 2 ) - ( 30n + 1 ) \(⋮\)d

=> 1 \(⋮\)d

=> d \(\in\){ 1 ; - 1 }

Vậy \(\frac{15n+1}{30n+1}\)là phân số tối giản

1 tháng 2 2018

cau hoi anh google

1 tháng 2 2018

anh google ko giup đc tui\

24 tháng 3 2020

a) Câu hỏi của ☪Ņĥøķ Ņģøç☪ - Toán lớp 6 - Học toán với OnlineMath

27 tháng 1 2016

bn nhấn vào đúng 0 sẽ ra đáp án

19 tháng 2 2017

b) \(\frac{n^3+2n}{n^4+3n^2+1}\)

Giải:

Gọi \(ƯCLN\left(n^3+2n;n^4+3n^2+1\right)\)\(d\)

\(\Rightarrow\left\{\begin{matrix}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{matrix}\right.\Rightarrow\left\{\begin{matrix}n\left(n^3+2n\right)⋮d\\n^4+2n^2⋮d\end{matrix}\right.\)

Do đó:

\(\left(n^4+3n^2+1\right)-\left(n^4+2n^2\right)⋮d\) Hay \(n^2+1⋮d\) (1)

\(\Rightarrow\left(n^2+1\right)\left(n^2+1\right)⋮d\) Hay \(n^4+2n^2+1⋮d\)

\(\Rightarrow\left(n^4+3n^2+1\right)-\left(n^4+2n^2+1\right)⋮d\) Hay \(n^2⋮d\) (2)

Từ (1) và (2)

\(\Rightarrow\left(n^2+1\right)-n^2⋮d\) Hay \(1⋮d\)

\(\RightarrowƯCLN\left(n^3+2n;n^4+3n^2+1\right)=1\) hoặc \(-1\)

\(\Rightarrow\frac{n^3+2n}{n^4+3n^2+1}\) là phân số tối giản (Đpcm)

2 tháng 4 2016

day la phan so co the rut gon duoc