K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2016

n(n+3)(n+6)

n(n2+9n+18)

n[(n+1)(n+2)+6n+16)]

n(n+1)(n+2)+6n2+16n chia hết 2

kb với mình nhé

26 tháng 7 2018

Xét số n trong các trường hợp :

+ n là số lẽ :   \(\left(n+3\right)\): chẵn ;  \(\left(n+6\right)\)lẻ \(\Rightarrow\left(n+3\right).\left(n+6\right)⋮2\)

+ n là số số chẵn : \(\left(n+3\right)\): lẽ ;  \(\left(n+6\right)\): chẵn \(\Rightarrow\left(n+3\right).\left(n+6\right)⋮2\)

Vậy với mọi số tự nhiên n thì ( n+ 3 ) . ( n+6 ) đều chia hết cho 2

   

26 tháng 7 2018

(n+3).(n+6)

Xét:

-n là 1 số lẻ

=>n+3 chẵn =>(n+3).(n+6) chẵn =>(n+3).(n+6)\(⋮\)2

-n là 1 số chẵn

=>n+6 chẵn =>(n+3).(n+6) chẵn =>(n+3).(n+6)\(⋮\)2

Vậy với mọi n thì tích (n+3).(n+6) chia hết cho 2

4 tháng 10 2016

Ta có 

kết quả là:

Nếu n + 3 là số chẵn

=> ( n + 3 ) ( n + 6 ) chia hết cho 2

Nếu n + 6 là số chẵn

=> ( n + 3 ) ( n + 6 ) chia hết cho 2

4 tháng 10 2016

Nếu n+3 là số chẵn thì\(\Rightarrow\)(n+3)(n+6) chia hết cho 2

Nếu n+6 là số chẵn thì (n+3)(n+6) chia hết cho 2

tk tôi nha

10 tháng 1 2018

Giả sử n2+5n+5 chia hết cho 25

=> n2+5n+5 chia hết cho 5

=> n2 chia hết cho 5 (vì 5n+5 chia hết cho 5)

Mà 5 là số nguyên tố

=> n chia hết cho 5

=> n = 5k (k thuộc N)

Ta có: n2 + 5n + 5 = (5k)2 + 5.5k + 5 = 25k2 + 25k + 5 

Vì 25k2 + 25k chia hết cho 25, 5 không chia hết cho 25

=> 25k2 + 25k + 5 không chia hết cho 25 hay n2 + 5n + 5 không chia hết cho 25

=> giả sử sai

Vậy...

10 tháng 1 2018

mk thk thì mk lm thui

5 tháng 10 2016

Vì số nào cũng chia hết cho 1

=> N có thể là bất cứ số nào .

5 tháng 10 2016

chia hết cho 2

29 tháng 11 2017

ta có: n^2 + n + 2 = n(n+1) + 2. 
n(n+1) là tích của 2 số tự nhiên liên liên tiếp nên có chữ số tận cùng là 0; 2; 6. 
Suy ra: n(n+1)+2 có chữ số tận cùng là 2; 4; 8. 
Mà: 2; 4; 8 không chia hết cho 5. 
Nên: n(n+1)+2 không chia hết cho 5. 
Vậy: n^2 + n+2 không chia hết cho 15 với mọi n thuộc N.

29 tháng 11 2017

Ta có: n^2 + n + 2 = n(n+1) + 1
n(n+1) là tích của 2 số tự nhiên liên liên tiếp nên có chữ số tận cùng là 0; 2; 6. 
Suy ra: n(n+1)+1 có chữ số tận cùng là 2; 4; 8. 
Mà: 2; 4; 8 không chia hết cho 5. 
Nên: n(n+1)+1 không chia hết cho 5. 
Vậy: n^2 + n+1 không chia hết cho 15 với mọi n thuộc N.

20 tháng 10 2017

1) +Với n là số chẵn => n+3 lẻ và n+6 chẵn. Vì 1 số chẵn và 1 số lẻ nhân với nhau tạo thành số chẵn hay tích đó chia hết cho 2 ( đpcm)

     +Với n là số lẻ => n+3 chẵn và n+6 lẻ ( tương tự câu trên)

2)Tg tự câu a

19 tháng 12 2021

1 + 1 = 

em can gap!!!

Nhanh e k cho

26 tháng 12 2015

Mọi số tự nhiên n đều đc viết dưới dạng : 2k hoặc 2k + 1

+ Nếu n = 2k => n + 4 = 2k + 4 chia hết choa 2

=> ( n + 4 ) ( n + 5 ) chia hết cho 2

+ Nếu n = 2k + 1 => n + 5 = 2k +1 + 5 = 2k + 6 chia hết cho 2

=> ( n + 4 ) ( n + 5 ) chia hết cho 2

Vậy : Với mọi số tự nhiên n thì ( n + 4 ) ( n + 5 ) chia hết cho 2