K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2016

Gọi d là ƯCLN ( 12n + 1; 30n + 2 )

=> 12n + 1 ⋮ d => 5.( 12n + 1 ) ⋮ d => 60n + 5 ⋮ d ( 1 )

=> 20n + 2 ⋮ d => 2.( 30n + 3 ) ⋮ d => 60n + 6 ⋮ d ( 2 )

Từ ( 1 ) và ( 2 ) => [ ( 60n + 6 ) - ( 60n + 5 ) ] ⋮ d

=> 1 ⋮ d => d = 1

Vì ƯCLN ( 12n + 1; 30n + 2 ) = 1 nên 12n + 1 và 30n + 2 là nguyên tố cùng nhau

=> \(\frac{12n+1}{30n+2}\) là phân số tối giản

10 tháng 2 2016

Gọi d là ƯCLN ( 12n + 1; 30n + 2 )

=> 12n + 1 ⋮ d => 5.( 12n + 1 ) ⋮ d => 60n + 5 ⋮ d ( 1 )

=> 20n + 2 ⋮ d => 2.( 30n + 3 ) ⋮ d => 60n + 6 ⋮ d ( 2 )

Từ ( 1 ) và ( 2 ) => [ ( 60n + 6 ) - ( 60n + 5 ) ] ⋮ d

=> 1 ⋮ d => d = 1

Vì ƯCLN ( 12n + 1; 30n + 2 ) = 1 nên 12n + 1 và 30n + 2 là nguyên tố cùng nhau

22 tháng 2 2020

thì nó là tối giản rồi còn gì

22 tháng 2 2020

nè mình

5 tháng 4 2019

UCLN (3n+5:n+2)=1 thì hai số trên nguyên tố cùng nhau rùi .không rút gon được nữa => tối giản 

5 tháng 4 2019

Gọi d là UCLN ( 3n+5;n+2)

Ta có:\(\hept{\begin{cases}3n+5⋮d\\n+2⋮d\end{cases}}\)

\(n+2⋮d\Rightarrow3\left(n+2\right)\)

                     hay \(3n+6⋮d\)

   ta xét hiệu: \(3n+6-\left(3n+5\right)⋮d\)

                   \(\Rightarrow1⋮d\)

Vậy P là phân số tối giản với mọi n là STN khi UCLN (3n+5;n+2)=1

Chúc bạn hk tốt!!!

26 tháng 3 2021
Gọi d là UCLN (12n+1;12n+3), d thuộc N sao -->12n+1 = 5(12n+1) = 60n+5chia hết cho d 30n+2=2(30n+2)=60n+4 chia hết cho d ->(60n+5)-(60n+4) chia hết cho d <=> 1 chia hết cho d => d=1=> ps 12n+1/30n+2 tối giản
18 tháng 3 2021

a) Vì n\(\inℕ\)nên n + 1 \(\inℕ\)và 2n + 3\(\inℕ\).

Gọi d \(\in\)ƯCLN ( n + 1 , 2n + 3 )

\(\Rightarrow n+1⋮d\)và \(2n+3⋮d\)

\(\Rightarrow\left(2n+3\right)-2\left(n+1\right)⋮d\)

\(\Rightarrow2n+3-2n-2⋮d\)

\(\Rightarrow1⋮d\Rightarrow d\in\left\{1;-1\right\}\)

\(\Rightarrow\frac{n+1}{2n+3}\)là phân số tối giản .

                           Vậy \(\frac{n+1}{2n+3}\)tối giản \(\forall n\inℕ\).

18 tháng 3 2021

b) TƯƠNG TỰ CÂU (a)

1 tháng 5 2019

Gọi  \(ƯCLN\left(6n+5;3n+2\right)\) là d.

\(\Rightarrow\hept{\begin{cases}6n+5⋮d\\3n+2⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}6n+5⋮d\\2\left(3n+2\right)⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}6n+5⋮d\\6n+4⋮d\end{cases}}\)

\(\Rightarrow\left(6n+5\right)-\left(6n+4\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\Rightarrow\left(6n+5;3n+2\right)=1\)

\(\Rightarrow\frac{6n+5}{3n+2}\) tối giản.

\(\frac{6n+5}{3n+2}\)tối giản

=>6n+5 chia hết cho 3n+2 

=>(6n+5)-2(3n+2)chia hết cho 3n+2

=>6n+5-6n-4 chia hết cho 3n+2

=>1 chia hết cho 3n+2

=>đpcm

13 tháng 2 2017

Gọi ƯCLN(12n+1;20n+2)là d

       12n+1\(⋮\)d                                                20n+2\(⋮\)d

=>5(12n+1)\(⋮\)d                                     =>   3(  20n+2)\(⋮\)d

=>60n+5\(⋮\)d        1                                    =>60n+6   \(⋮\)d         2

Lấy 2 trừ 1 suy ra  1\(⋮\)d

                         =>d=1

       Hay ƯCLN(12n+1;20n+2)=1

       =>\(\frac{12n+1}{20n+2}\)là ps tối giản

13 tháng 2 2017

HELP ME, PLEASE !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!:(

23 tháng 4 2020

B1. Ta có: A= \(\frac{4n-1}{2n+3}+\frac{n}{2n+3}=\frac{4n-1+n}{2n+3}=\frac{5n-1}{2n+3}\)

=> 2A = \(\frac{10n-2}{2n+3}=\frac{5\left(2n+3\right)-17}{2n+3}=5-\frac{17}{2n+3}\)

Để A là số nguyên <=> 2A là số nguyên <=> \(\frac{17}{2n+3}\in Z\)

<=> 17 \(⋮\)2n + 3 <=> 2n + 3 \(\in\)Ư(17) = {1; -1; 17; -17}

Lập bảng:

 2n + 3 1 -1 17 -17
  n -1 -2 7 -10

Vậy ....

23 tháng 4 2020

Bài 2:

Gọi d là ƯCLN (7n-1; 6n-1) (d thuộc N*)

\(\Rightarrow\hept{\begin{cases}7n-1⋮d\\6n-1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6\left(7n-1\right)⋮d\\7\left(6n-1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}42n-6⋮d\\42n-7⋮d\end{cases}}}\)

=> 42n-7-42n+6 chia hết cho d

=> -1 chia hết cho d

mà d thuộc N* => d=1

=> ƯCLN (7n-1; 6n-1)=1

=> đpcm

4 tháng 4 2018

Phân số tối giản khi ƯCLN của cả tử và mẫu là 1.

Gọi ƯCLN(2n+2011;n+1005)=a

\(\Rightarrow2n+2011⋮a\)

\(\Rightarrow n+1005⋮a\Rightarrow2n+2010⋮a\)

\(\Rightarrow\left(2n+2011\right)-\left(2n+2010\right)⋮a\Rightarrow1⋮a\Rightarrow a=1\)

Vậy suy ra phân số \(\frac{2n+2011}{n+1005}\)là phân số tối giản.

5 tháng 4 2018

thanks rất nhìu!