Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, vì trong 3 số đó có số chia hết cho 3
b, vì trong 3 số lẻ có số chia hết cho 3
c, vì 6 số thì sẽ 3 cặp có tổng tương đương và cặp ở giữa là 2 số liên tiếp có tổng là số lẻ cho nên 3 cặp đó sẽ bằng tổng nhau nhân lên 3 lần lên 6 số liên tiếp ko chia hết cho 6 mà chỉ chia hết cho 3.
a)Gọi 3 số chẵn liên tiếp là 2n;2n+2;2n+4.Theo bài ra ta có: \(\left(2n+2n+2+2n+4\right)⋮3\)
- \(2n+2n+2+2n+4=6n+6\)
\(=6\left(n+1\right)\)
\(=\left[3.2\left(n+1\right)\right]⋮3\)=>Điều phải chứng minh.
b)Gọi 3 số lẻ liên tiếp là 2n+1;2n+3 và 2n+5.Theo bài ra ta có: \(\left(2n+1+2n+3+2n+5\right)⋮3\)
- \(2n+1+2n+3+2n+5=6n+9\)
\(=\left[3\left(2n+3\right)\right]⋮3\) =>Điều phải chứng minh.
c)Gọi 6 số nguyên liên tiếp là n;n+1;n+2;...;n+5.Theo bài ra ta có:
- \(\left(n+n+1+n+2+n+3+n+4\right)⋮5\)
\(=5n+10\)
\(=\left[5\left(n+2\right)\right]⋮5\)=>Điều phải chứng minh.
- \(\left(n+n+1+n+2+n+3+n+4+n+5\right)\)không \(⋮6\)
\(=6n+15\) .Vì \(15\) không \(⋮6\)=> \(6n+15\)không \(⋮6\).
T_i_c_k cho mình nha.
Thank you so much!Wish you would better at Math ^^
goi so nguyen do la x
.) ta co : x+x+1+x+2 =3x+3
=3(x+1) chia het cho 3
vay tong cua 3 so tu nhien lien thi chia het cho 3
.) ta co : x+x+1+x+2+x+4+x+5=5x+5
=5(5+1) chia het cho 5
gọi 3 số đó là a: a+1 a+2
ta có a+ a+1+ a+2=3a+3
3 chia hết cho 3
suy ra 3a chia hết cho 3
suy ra 3a+3 chia hết cho 3
syu ra tổng của 3 số nguyên liên tiếp chia hết cho 3
tương tự chia hết cho 5
chứng tỏ rằng tổng của 7 số tự nhiên liên tiếp là một số từ nhiên liên tiếp là một số chia hết cho 7
a ) gọi 3 số tự nhiên liên tiếp là a ; a + 1 , a + 2 ( a thuộc N )
ta có : a + ( a +1 ) + ( a + 2 ) = 3a + 3 = 3 . ( a + 1 ) chia hết cho 3 .
vậy tổng của 3 số tự nhiên liên tiếp chia hết cho 3 .
câu b thì mk ko biết !
vào đây tham khảo nha: Câu hỏi của Hoàng Như Anh - Toán lớp 7 - Học toán với OnlineMath
ok mk nhé!!!! 56546676576658545556576576765456578779879876456346245757657656587
a )Gọi 3 số tự nhiên liên tiếp là : a , a + 1, a + 2
Tổng của 3 số tự nhiên liên tiếp là:
a +a+1+a+2
= ( a+ a+ a) +( 1 + 2)
= 3 x a + 3
Vì 3xa chia hết cho 3
và 3 chia hết cho 3
\(\Rightarrow\)3 x a + 3 chia hết cho 3
Vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3
Chỉ làm dc phần a) thui, sorry nha
k giùm mk nha
a/ Gọi ba số tự nhiên liên tiếp đó lần lượt là a ; a + 1 ; a + 2 (với a là số tự nhiên)ta có:
a + (a + 1) + (a + 2) = 3a + 3 chia hết cho 3
Vậy tổng của ba số tự nhiên liên tiếp là một số chia hết cho 3.
b/ Gọi bốn số tự nhiên liên tiếp đó lần lượt là a ; a + 1 ; a + 2 ; a + 3 (với a là một số tự nhiên) ta có:
a + (a + 1) + (a + 2) + (a + 3) = 4a + 4 không chia hết cho 4
Vậy tổng của bốn số tự nhiên liên tiếp là một số không chia hết cho 4.
(Đề của câu b) bạn ghi sai nha phải là CMR: Tổng của 4 số tự nhiên liên tiếp không chia hết cho 4)
Gọi 3 số nguyên liên tiếp là: \(a-1;\)\(a;\)\(a+1\)
Tổng các lập phương của 3 số nguyên liên tiếp là:
\(A=\left(a-1\right)^3+a^3+\left(a+1\right)^3=a^3-3a^2+3a-1+a^3+a^3+3a^2+3a+1\)
\(=3a\left(a^2+1\right)=3a\left(a^2-1+3\right)=3a\left(a^2-1\right)+9a\)
\(=3\left(a-1\right)a\left(a+1\right)+9a\)
Nhận thấy: \(\left(a-1\right)a\left(a+1\right)\)là tích của 3 số nguyên liên tiếp => chia hết cho 3
=> \(3\left(a-1\right)a\left(a+1\right)\)chia hết cho 9; 9a chia hết cho 9
=> A chia hết cho 9
Gọi \(3\) số nguyên liên tiếp lần lượt là: \(\left(a-1\right);a;\left(a+1\right)\)
Chứng minh: \(\left(a-1\right)^3+a^3+\left(a+1\right)^3\) chia hết cho \(9\).
\(\left(a-1\right)^3+a^3+\left(a+1\right)^3\)
\(=a^3-3a^2+3a-1+a^3+a^3+3a^2+3a+1\)
\(=3a^3+6a\)
\(=3a\left(a^2+2\right)\)
\(=3a\left(a^2-1\right)+9a\)
\(=3\left(a-1\right)a\left(a+1\right)+9a\)
Vì tích của \(3\) số tự nhiên liên tiếp chia hết cho 3 nên \(3\left(a-1\right)a\left(a+1\right)\) chia hết cho \(9\).
Mặt khác \(9a\) chia hết cho \(9\) nên:
\(\Rightarrow3\left(a-1\right)a\left(a+1\right)+9a\)
c) Gọi 2 số đó là n và n +1
n + (n+1) = 2n + 1 không chia hết cho 2
d) Tương tự : 3 số đó là n ; n+1 ; n +2
n + n + 1 + n + 2 = 3n + 3 chia hết cho 3
e) n + n + 1 + n + 2 + n + 3 = 4n+5 không chia hết cho 4
Ba số nguyên liên tiếp có dạng: n; n + 1; n + 2; với n \(\in\) Z
Tổng ba số nguyên liên tiếp là: A = n + n + 1 + n + 2 = 3n + 3
A = 3.( n + 1)
với n là số lẻ ta có: n + 1 là số chẵn ⇒ n + 1 ⋮ 2 ⇒ 3.(n + 1) ⋮ 6
Với n là số chẵn ta có: n + 1 là số lẻ ⇒ n + 1 không chia hết cho 2
Khi đó tổng ba số tự nhiên liên tiếp không chia hết cho 6.
Từ những lập luận trên ta có tổng của ba số nguyên liên tiếp không phải lúc nào cũng chia hết cho 6.
Kết luận việc chứng minh tổng ba số nguyên liên tiếp bất kỳ luôn chia hết cho 6 là điều không thể xảy ra.