\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)<1

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2018

Ta có:\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}\)

\(=\frac{49}{50}\)

Mà \(\frac{49}{50}< 1\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}< 1\)

2 tháng 4 2019

Mình còn chưa học lớp 6 huhu

2 tháng 4 2019

\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{49.50}< 1\)

\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{49}-\frac{1}{50}< 1\)

\(S=1-\frac{1}{50}< 1\)

\(S=\frac{49}{50}< 1\left(đpcm\right)\)

24 tháng 4 2017

\(=1-\frac{1}{2}+\frac{1}{2}+\frac{1}{3}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1+\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+...+\left(-\frac{1}{99}+\frac{1}{99}\right)-\frac{1}{100}\)

\(=1+0+0+...+0-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}< 11\)

Vậy : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}< 11\)

24 tháng 4 2017

=1/2-1/3+1/3-1/4+...+1/99-1/100

=1/2-1/100

=50/100-1/100

=49/100<1

=> dãy trên < 1 đđcm

24 tháng 4 2017

\(S=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}< 1\)

Vậy \(S< 1\left(đpcm\right)\)

23 tháng 5 2017

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1+\left(\frac{-1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+\left(-\frac{1}{4}+\frac{1}{4}\right)+...+\left(-\frac{1}{49}+\frac{1}{49}\right)-\frac{1}{50}\)

\(=1+0+0+0+...+0-\frac{1}{50}\)

\(=1-\frac{1}{50}\)

\(=\frac{50}{50}-\frac{1}{50}\)

\(=\frac{49}{50}< 1\)

Vậy A < 1

23 tháng 5 2017

KO BIẾT

10 tháng 5 2017

Bài 1:

A = \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(1-\frac{1}{50}=\frac{49}{50}\)

Bài 2:

Ta có: \(\frac{1}{1^2}=1;\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{50^2}< \frac{1}{49.50}\)

\(\Rightarrow A< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1+1-\frac{1}{50}=2-\frac{1}{50}< 2\)

Vậy A < 2

Bài 3:

\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)

\(=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)

\(=\frac{1}{5}-\frac{1}{12}=\frac{7}{60}\)

Bài 4:

\(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)

\(2S=6+3+\frac{3}{2}+...+\frac{3}{2^8}\)

\(2S-S=\left(6+3+\frac{3}{2}+...+\frac{3}{2^8}\right)-\left(3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\right)\)

\(S=6-\frac{3}{2^9}=6-\frac{3}{512}=\frac{3069}{512}\)

10 tháng 5 2017

A=1-1/2+1/2-1/3+.............................1/49-1/50

A=1-1/50

A=49/50

24 tháng 4 2015

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1-\frac{1}{50}\right)+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+...+\left(\frac{1}{49}-\frac{1}{49}\right)\)

\(=\left(1-\frac{1}{50}\right)+0+0+...+0=1-\frac{1}{50}=\frac{50}{50}-\frac{1}{50}=\frac{49}{50}\)

Vì \(\frac{49}{50}<1\) nên \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}<1\)

Vậy thỏa mãn đề bài

7 tháng 3 2018

Ta có:

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}\)

\(=\frac{49}{50}\)

Mà \(\frac{49}{50}< 1\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}< 1\left(đpcm\right)\)

  1/1.2+1/2.3+1/3.4+.....+1/49.50

=1-1/2+1/2-1/3+1/3-1/4+....+1/49-1/50

=1-1/50

=49/50

5 tháng 2 2019

 \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}=\frac{49}{50}\)

16 tháng 1 2016

\(a,\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}<1\)

\(b,\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{50.50}\)

\(<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}<1\)

=>điều cần chứng minh

16 tháng 1 2016

Bai nay de ma bn! Neu bn biet cong thuc la lam dc a!!!

7 tháng 7 2017

\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+..........+\frac{1}{49.50}\)

\(\Leftrightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..........+\frac{1}{49}-\frac{1}{50}\)

\(\Leftrightarrow A=1-\frac{1}{50}=\frac{49}{50}\)

cái kia tự tìm