Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
a) \(0,7\left(6\right)=\dfrac{76-7}{90}=\dfrac{69}{90}=\dfrac{23}{30}\)
b) ta có: \(0,2\left(148\right)=\dfrac{2148-2}{9990}=\dfrac{2146}{9990}=\dfrac{29}{135}\)
do đó: \(1,2\left(148\right)=1+0,2\left(148\right)=1+\dfrac{29}{135}=\dfrac{164}{135}\)
Lời giải:
a) Ta có:
$x^2+2x+3=0$
$\Leftrightarrow (x^2+2x+1)=-2$
$\Leftrightarrow (x+1)^2=-2< 0$ (vô lý do $(x+1)^2\geq 0, \forall x$)
Do đó PT vô nghiệm
b)
$(x+3)^2-6x=0$
$\Leftrightarrow x^2+6x+9-6x=0$
$\Leftrightarrow x^2=-9< 0$ (vô lý)
Do đó PT vô nghiệm.
Chứng minh : \(\left(x^2+y^2+z^2\right)^2\ge3\left(x^3y+y^3z+z^3x\right)\)
\(\Leftrightarrow\dfrac{1}{2}\left(\left(x^2-y^2-xy-xz+2yz\right)^2+\left(y^2-z^2-yz-xy+2xz\right)^2+\left(z^2-x^2-xz-yz+2xy\right)^2\right)\ge0\)
Áp dụng BĐT AM-GM ta có:
\(\dfrac{a}{ab+1}=a-\dfrac{a^2b}{ab+1}\ge a-\dfrac{a^2b}{2\sqrt{ab}}=a-\dfrac{\sqrt{a^3b}}{2}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\dfrac{b}{bc+1}\ge b-\dfrac{\sqrt{b^3c}}{2};\dfrac{c}{ca+1}\ge c-\dfrac{\sqrt{c^3a}}{2}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge3-\dfrac{1}{2}\left(\sqrt{a^3b}+\sqrt{b^3c}+\sqrt{c^3a}\right)\ge3-\dfrac{3}{2}=\dfrac{3}{2}\)
Xảy ra khi \(a=b=c=1\)
Ta có BĐT:
\(a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\)\(\ge\left(a+b\right)ab\)
\(\Rightarrow a^3+b^3+abc\ge ab\left(a+b+c\right)\)
\(\Rightarrow\dfrac{1}{a^3+b^3+abc}\le\dfrac{1}{ab\left(a+b+c\right)}\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế:
\(VT\le\dfrac{1}{ab\left(a+b+c\right)}+\dfrac{1}{bc\left(a+b+c\right)}+\dfrac{1}{ac\left(a+b+c\right)}\)
\(=\dfrac{a+b+c}{abc\left(a+b+c\right)}=\dfrac{1}{abc}=VP\)
Khi \(a=b=c\)
a)\(\frac{a+b}{2}\ge\sqrt{ab}\Rightarrow a+b\ge2\sqrt{ab}\)
\(\Rightarrow a^2+2ab+b^2\ge4ab\)
\(\Rightarrow a^2-2ab+b^2\ge0\Rightarrow\left(a-b\right)^2\ge0\)
Dấu "=" xảy ra khi \(a=b\)
b)Áp dụng BĐT AM-GM ta có:
\(\left\{\begin{matrix}\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc}{a}\cdot\frac{ca}{b}}=2c\\\frac{bc}{a}+\frac{ab}{c}\ge2\sqrt{\frac{bc}{a}\cdot\frac{ab}{c}}=2b\\\frac{ca}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ca}{b}\cdot\frac{ab}{c}}=2a\end{matrix}\right.\)
Cộng từng vế của 3 BĐT trên rồi thu gọn ta được điều cần chứng minh
Dấu "=" xảy ra khi \(a=b=c\)
c)Áp dụng BĐT AM-GM ta có:
\(\frac{3a+5b}{2}\ge\sqrt{3a\cdot5b}\Leftrightarrow\left(3a+5b\right)^2\ge4\cdot15P\)
\(\Leftrightarrow12^2\ge60P\Leftrightarrow P\le\frac{12}{5}\)
Dấu "=" xảy ra khi \(\left\{\begin{matrix}a=2\\b=\frac{6}{5}\end{matrix}\right.\)
\(0,\left(37\right)+0,\left(62\right)=\dfrac{37}{99}+\dfrac{62}{99}=\dfrac{99}{99}=1\)
\(0,\left(33\right)\cdot3=\dfrac{1}{3}\cdot3=1\)