Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta phân tích như sau :
abcabc=abcx1001 vì 1001 chia hết cho 3 số nguyên 7 ;11;13 nên abcx1001cũng chia hết cho 7;11;13 mà abcabc=abcx1001 từ đó suy ra abcabc chia hết ít nhất 3 số nguyên tố
ta có:abcabc=abc.1001
mà 1001 chia hết cho 7;11;13(là số nguyên tố)
nên abc.1001 chia hết cho 7;11;13(là số nguyên tố)
suy ra số tự nhiên abcabc chia hết cho ít nhất 3 số nguyên tố
a) \(A=\frac{2}{11.15}+\frac{2}{15.19}+...+\frac{2}{51.55}\)
\(=\frac{1}{2}\left(\frac{4}{11.15}+\frac{4}{15.19}+...+\frac{4}{51.55}\right)\)
\(=\frac{1}{2}\left(\frac{15-11}{11.15}+\frac{19-15}{15.19}+...+\frac{55-51}{51.55}\right)\)
\(=\frac{1}{2}\left(\frac{1}{11}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}+...+\frac{1}{51}-\frac{1}{55}\right)\)
\(=\frac{1}{2}\left(\frac{1}{11}-\frac{1}{55}\right)=\frac{2}{55}\)
b) \(\overline{abcabc}=\overline{abc}.1001=\overline{abc}.7.11.13\)suy ra đpcm.
\(\overline{abcabc}=1001.\overline{abc}=7.11.13.\overline{abc}\)
7, 11, 13 là các số nguyên tố
a có:abcabc=abc.1001
mà 1001 chia hết cho 7;11;13(là số nguyên tố)
nên abc.1001 chia hết cho 7;11;13(là số nguyên tố)
suy ra số tự nhiên abcabc chia hết cho ít nhất 3 số nguyên tố
abcabc = abc . 1001
mà 1001 chia hết cho 7;11;13(là số nguyên)
nên abc.1001 chia hết cho 7;11;13(là số nguyên)
suy ra số tự nhiên abcabc chia hết cho ít nhất 3 số nguyên tố
abcabc=abcx1001=abcx7x11x13
7, 11, 13 là 3 SNT nên chắc chắn abcabc chia hết cho ít nhất 3 SNT là 7,11,13
k nha bạn
ta có abcabc= abc.1001= abc.7.11.13
suy ra abc chia hết cho 7,11,13 là các số nguyên tố
Ta có : \(\overline{abcabc}=\overline{abc}.1001=\overline{abc}.11.91⋮11\)
\(\Rightarrow\overline{abcabc}⋮11\)
Ta có \(\overline{abcabc}=\overline{abc}.1001\)
\(=\overline{abc}.11.91⋮11\)
\(=>\overline{abcabc}⋮11\left(dpcm\right)\)
Mọi người cứ làm từng câu một, vậy tui làm cả 2 câu nhé!
Câu 1:
p là số nguyên tố lớn hơn 3 => p=3k+1 hoặc p=3k+2
Nếu p=3k+2
=>p+4=3k+2+4=3k+6 (loại vì p+4 cũng là số nguyên tố)
=>p=3k+1
=>p+8=3k+1+8=3k+9 là hợp số (đpcm)
Câu 2:
Ta có: abcabc=abc.1001=abc.7.11.13
Vì 7;11;13 là 3 số nguyên tố nên abcabc chia hết cho ít nhất 3 số nguyên tố (đpcm)
Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2 nhưng do p +4 là số nguyên tố nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1. Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số.
Vì 1001 = 7.11.13 (là tích của 3 số nguyên tố)
=> \(\overline{abcabc}\)luôn chia hết cho 3 số nguyên tố là 7; 11 và 13
Ta có abcabc = abc.1001
Mà 1001 chia hết cho 7, 11, 13( là các số nguyên tố) nên abc.1001 chia hết cho 7; 11; 13
\(\Rightarrow\) Số tự nhiên abcabc chia hết cho ít nhất 3 số nguyên tố.