Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)gọi d là ƯCLN(n+1;2n+3)
=>2n+3 chia hết cho d
và n+1 chia hết cho d
=>2(n+1) chia hết cho d
=>2n+3-2(n+1)chia hết cho d
hay 1chia hết cho d
=>d=1
=>phân số \(\dfrac{n+1}{2n+3}\)tối giản
b)Gọi d là ƯCLN(2n+3;4n+8)
=>4n+8chia hết cho d
và 2n+3 chia hết cho d
=>2(2n+3) chia hết cho d
=>4n+8-2(2n+3) chia hết cho d
hay 2 chia hết cho d
Do 2n+3 là số lẻ và 2n+3 chia hết cho d
=>d không thể là số chẵn=>d=1
=>phân số \(\dfrac{2n+3}{4n+8}\) tối giản
Gọi d=ƯCLN (n+1 ; 2n+3)
Do đó d thuộc ƯC (n+1 ; 2n+3)
=> n+1 chia hết cho d ; 2n+3 chia hết cho d
=> 2n+2 chia hết cho d ; 2n+3 chia hết cho d
=> (2n+3)-(2n+2) chia hết cho d
=> 1 chia hết cho d
=> n+1 và 2n+3 là hai số nguyên tố cùng nhau
=> n+1/2n+3 là phân số tối giản với mọi số n.
a) Gọi d = ƯCLN(n+1; 2n+3) (d thuộc N*)
=> n + 1 chia hết cho d; 2n + 3 chia hết cho d
=> 2.(n + 1) chia hết cho d; 2n + 3 chia hết cho d
=> 2n + 2 chia hết cho d; 2n + 3 chia hết cho d
=> (2n + 3) - (2n + 2) chia hết cho d
=> 2n + 3 - 2n - 2 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(n+1; 2n+3) = 1
=> n + 1 và 2n + 3 là 2 số nguyên tố cùng nhau
Câu b lm tương tự
a) Đặt ƯCLN(n+1; 2n+3) = d
=> (2n + 3) - (n + 1) chia hết cho d
=> (2n + 3) - [2.(n + 1)] chia hết cho d
=> (2n + 3) - (2n + 2) chia hết cho d
=> 1 chia hết cho d => d = 1
Do ƯCLN(n+1; 2n+3) = 1 nên \(\frac{n+1}{2n+3}\) tối giản
b) Đặt ƯCLN(2n+3; 4n+8) = d
=> (4n + 8) - (2n + 3) chia hết cho d
=> (4n + 8) - [2.(2n + 3)] chia hết cho d
=> (4n + 8) - (4n + 6) chia hết cho d
=> 2 chia hết cho d => d \(\in\) {1; 2}
Nhưng d khác 2 vì d là ước chung của 2 số lẻ nên d = 1
Do ƯCLN(2n+3; 4n+8) = 1 nên \(\frac{2n+3}{4n+8}\) tối giản
a) \(\frac{n+1}{2n+3}\)
Đặt ƯCLN(n+1; 2n+3) = d
=> n + 1 \(⋮d\) và 2n + 3 \(⋮d\)
=> (2n + 3) - (n + 1) \(⋮d\)
=> (2n + 3) - [2.(n + 1)] \(⋮d\)
=> (2n + 3) - (2n + 2) \(⋮d\)
=> 1 \(⋮d\)
=> d = 1
Do ƯCLN(n+1; 2n+3) = 1 nên phân số \(\frac{n+1}{2n+3}\) tối giản
b) \(\frac{2n+3}{4n+8}\)
Đặt ƯCLN(2n+3;4n+8) = d
=> 2n+3 \(⋮d\) và 4n+8\(⋮d\)
=> (4n + 8) - (2n + 3) \(⋮d\)
=> (4n + 8) - [2.(2n + 3)] \(⋮d\)
=> (4n + 8) - (4n + 6) \(⋮d\)
=> 2 chia hết cho d
=> d ∈ ∈ {1; 2}
Vì 2n + 3 là số lẻ, 4n + 8 là số chẵn nên ƯC(2n+3;4n+8) là 1 số lẻ
=> \(d\ne2\Rightarrow d=1\)
Do ƯCLN(2n+3; 4n+8) = 1 nên phân số \(\frac{2n+3}{4n+8}\) tối giản
Bn tham khảo ở đây nha Ca-Ton -Kit
Câu hỏi của Thảo Vi - Toán lớp 6 - Học toán với OnlineMath
Gọi \(d=ƯCLN\left(2n+3;4n+8\right)\)(\(d\in N\)*)
\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)
\(\Rightarrow2⋮d\)
Vì \(d\in N\)*; \(2⋮d\Rightarrow d\in\left\{1;2\right\}\)
+) \(d=2\Rightarrow2n+3⋮2\Rightarrow3⋮2\) (vô lí )\(\rightarrow loại\)
\(\RightarrowƯCLN\left(2n+3;4n+8\right)=1\)
\(\Rightarrow2n+3;4n+8\) nguyên tố cùng nhau với mọi n
\(\Rightarrow\)Phân số \(\dfrac{2n+3}{4n+8}\) tối giản với mọi n
Hk tốt nhs!!
Gợi Ư CLN\(\left(2n+3;4n+8\right)=d\)
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\Rightarrow2.\left(2n+3\right)⋮d\Rightarrow4n+6⋮d\\4n+8⋮d\end{cases}}\)
\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\Rightarrow d=1;2\)
\(+d=2\Rightarrow2n+3⋮2\)
Mak 2n+3 ko chia hết cho 2
\(\Rightarrow d\ne2\)
\(\Rightarrow d=1\)
\(\Rightarrowđpcm\)
a, \(\frac{n+2}{n+3}\)
Gọi \(d=ƯCLN\left(n+2,n+3\right)\)
\(\Rightarrow\hept{\begin{cases}n+2⋮d\\n+3⋮d\end{cases}}\)
\(\Rightarrow\left(n+3\right)-\left(n+2\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy phân số \(\frac{n+2}{n+3}\)là p/số tối giản
b, \(\frac{n+1}{2n+3}\)
Gọi \(d=ƯCLN\left(n+1,2n+3\right)\)
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\)
\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy...
Gọi d là ƯCLN ( n + 1 ; 2n + 3 )
=> n + 1 ⋮ d => 2.( n + 1 ) ⋮ d => 2n + 2 ⋮ d ( 1 )
=> 2n + 3 ⋮ d => 1.( 2n + 3 ) ⋮ d => 2n + 3 ⋮ d ( 2 )
Từ ( 1 ) và ( 2 ) => [ ( 2n + 3 ) - ( 2n + 2 ) ] ⋮ d
=> 1 ⋮ d => d = + 1
Vì ƯCLN ( n + 1 ; 2n + 3 ) = 1 nên \(\frac{n+1}{2n+3}\) là p/s tối giản
Câu 2 làm tương tự
Gọi d là ƯCLN ( n + 1 ; 2n + 3 )
=> n + 1 ⋮ d => 2.( n + 1 ) ⋮ d => 2n + 2 ⋮ d ( 1 )
=> 2n + 3 ⋮ d => 1.( 2n + 3 ) ⋮ d => 2n + 3 ⋮ d ( 2 )
Từ ( 1 ) và ( 2 ) => [ ( 2n + 3 ) - ( 2n + 2 ) ] ⋮ d
=> 1 ⋮ d => d = + 1
Vì ƯCLN ( n + 1 ; 2n + 3 ) = 1 nên p/s đã cho là p/s tối giản
Câu 2 làm tương tự
\(\frac{n+1}{2n+3}\)
Gọi ƯCLN(n + 1, 2n + 3) là a
Ta có:
n + 1\(⋮\)a
\(\Rightarrow\)2(n + 1)\(⋮\)a
\(\Leftrightarrow\)2n + 2\(⋮\)a
2n + 3\(⋮\)a
\(\Rightarrow\)(2n + 3) - (2n + 2)\(⋮\)a
\(\Rightarrow\)1\(⋮\)a
\(\Rightarrow\)a = 1
\(\frac{2n+1}{3n+2}\)
Gọi ƯCLN(2n + 1, 3n + 2) là b
Ta có:
2n + 1\(⋮\)b
\(\Rightarrow\)3.(2n + 1)\(⋮\)b
\(\Leftrightarrow\)6n + 3\(⋮\)b (1)
3n + 2\(⋮\)b
\(\Rightarrow\)2.(3n + 2)\(⋮\)b
\(\Leftrightarrow\)6n + 4\(⋮\)b (2)
Từ (1), (2) ta có:
(6n + 4) - (6n + 3)\(⋮\)b
\(\Leftrightarrow\)1\(⋮\)b
\(\Rightarrow\)b = 1
Vậy ƯCLN(2n + 1, 3n + 2) là 1
\(\Rightarrow\)Phân số tối giản
a) Gọi d là ƯCLN(n+1;2n+3)
=>n+1 chia hết cho d và 2n+3 chia hết cho d
=>2(n+1) chia hết cho d hay 2n+2 chia hết cho d
=>(2n+3)-(2n+2) chia hết cho d
hay 1 chia hết cho d
=>d=1
=> phân số \(\dfrac{n+1}{2n+3}\) tối giản với mọi số tự nhiên n
b) Gọi d là ƯCLN(4n+8;2n+3)
=>4n+8 chia hết cho d và 2n+3 chia hết cho d
=>2(n+3) chia hết cho d hay 4n+6 chia hết cho d
=>(4n+8)-(4n+6) chia hết cho d
hay 2 chia hết cho d
Do 2n+3=2(n+1)+1 không chia hết cho 2=>d phải là số lẻ và 2 chia hết cho d =>d=1
=> phân số \(\dfrac{2n+3}{4n+8}\) tối giản với mọi số tự nhiên n
Bạn vào đây nhé: Câu hỏi của Nguyễn Đinh Huyền Mai - Toán lớp 6 | Học trực tuyến