Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+3+3^2+.....+3^{11}\)
\(A=\left(1+3+3^2\right)+....+\left(3^9+3^{10}+3^{11}\right)\)
\(A=\left(3^0.1+3^0.3+3^0.3^2\right)+....+\left(3^9.1+3^9.3+3^9.3^2\right)\)
\(A=1.\left(1+3+3^2\right)+....+3^9\left(1+3+3^2\right)\)
\(A=1.13+....+3^9.13\)
\(A=13.\left(1+....+3^9\right)⋮13\left(đpcm\right)\)
\(A=1+2^2+2^3+...+2^{2018}\)
\(2A=2+2^2+...+2^{2019}\)
\(2A-A=\left(2+2^2+...+2^{2019}\right)-\left(1+2^2+2^3+...+2^{2018}\right)\)
\(A=2^{2019}-1\)
\(\Rightarrow A+1=2^{2019}-1+1=2^{2019}\)
\(\Rightarrow A+1\)là một lũy thừa
đpcm
\(B=1+3+3^2+3^3+...+3^{98}+3^{99}\)
\(=\left(1+3+3^2+3^3\right)+...+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)\)
\(=40+...+3^{96}.\left(1+3+3^2+3^3\right)\)
\(=40+...+3^{96}.40\)
\(=\left(1+...+3^{96}\right).40⋮40\)
\(\Rightarrow\) \(B⋮40\)
Bạn vào câu hỏi tương tự là có nha !
Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
a) S=1-3+3^2-3^3+...+3^98-3^99
S=(1-3+3^2-3^3)+(3^4-3^5+3^6-3^7)+...+(3^96-3^97+3^98-3^99)
S=-20+3^4(1-3+3^2-3^3)+...+3^96(1-3+3^2+3^3)
S=-20+3^4(-20)+...+3^96(-20)
S=-20(1+3^4+...+3^96)
=>S chia hết cho -20
b) S=1-3+3^2-3^3+...+3^98-3^99
3S=3(1-3+3^2-3^3+...+3^98-3^99)
3S=3-3^2+3^3-3^4+...+3^99-3^100
3S+S=(3-3^2+3^3-3^4+...+3^99-3^100)+(1-3+3^2-3^3+..+3^98-3^99)
4S=1-3^100
S=(1-3^100)/4
=>1-3^100 chia hết cho 4 (vì z là số nguyên)
=>3^100-1 chia hết cho 4
=>3^100 chia 4 dư 1
A = 3+32+33+...+312
A = (3+32)+(33+34)+...+(311+312)
A = 1(3+32)+32(3+32)+...+311.(3+32)
A = 1.12 + 32.12 +....+311.12
A = 12(1+32+...+311) chia hết cho 12
Mà 12 chia hết cho 4
=> A chia hết cho 4
A = 3+32+33+...+312
A = (3+32+33)+(34+35+36)+...+(310+311+312)
A = 3(1+3+32)+34(1+3+32)+....+310(1+3+32)
A = 3.13 + 34.13 +.....+310.13
A = 13(3+34+....+310) chia hết cho 13
KL: A chia hết cho 4; 12; 13 (đpcm)
tick đi làm cho