K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2018

\(A=1+2^2+2^3+...+2^{2018}\)

\(2A=2+2^2+...+2^{2019}\)

\(2A-A=\left(2+2^2+...+2^{2019}\right)-\left(1+2^2+2^3+...+2^{2018}\right)\)

\(A=2^{2019}-1\)

\(\Rightarrow A+1=2^{2019}-1+1=2^{2019}\)

\(\Rightarrow A+1\)là một lũy thừa

                            đpcm

10 tháng 8 2018

mạo phép chỉnh đề

\(A=1+2+2^2+2^3+...+2^{2018}\)

=> \(2A=2+2^2+2^3+2^4+....+2^{2019}\)

=>  \(2A-A=\left(2+2^2+2^3+2^4+...+2^{2019}\right)-\left(1+2+2^2+2^3+....+2^{2018}\right)\)

=>  \(A=2^{2019}-1\)

=>  \(A+1=2^{2019}\)

Vậy  A+ 1 là một lũy thừa

23 tháng 7 2018

\(2.2^2.2^3.2^4.........2^{100}\)

\(=2^{1+2+3+4+......+100}\)

\(=2^{5050}\)

23 tháng 7 2018

\(2.2^2.2^3.2^4.....2^{100}\)

\(=2^{1+2+3+4+...+100}\)

Đặt \(A=1+2+3+4+...+100\)

\(A=\frac{(100+1)100}{2}\)

\(A=5050\)

\(\Rightarrow2.2^2.2^3.2^4.....2^{100}=2^{5050}\)

9 tháng 11 2018

Câu 1 )215-211 không chia hết cho 17 bạn ạ

9 tháng 11 2018

Mk nghĩ đề câu 1 là chứng minh 215+211 chia hết cho 17.

Đây là cách giải của mk:

215+211= 211(24+1)= 211(16+1)= 211.17 chia hết cho 17.

=> 215+211 chia hết cho 17.

21 tháng 2 2020

\(S=1-3+3^2-3^3+...+3^{98}-3^{99}\)

\(=3^0-3^1+3^2-3^3+...+3^{98}-3^{99}\)có 100 hạng tử

\(=\left(3^0-3^1+3^2-3^3\right)+\left(3^4-3^5+3^6-3^7\right)+...+\left(3^{96}-3^{97}+3^{98}-3^{100}\right)\) có 25 cặp

\(=-20+3^4.\left(-20\right)+...+3^{96}.\left(-20\right)\)

\(=-20\left(1+3^4+...+3^{96}\right)⋮-20\)

16 tháng 9 2019

1) So sánh

a) 79 và 84

Ta có : 84 < 494 

     = (72)4

     = 72.4

     = 78 < 79

=> 84 < 79

b) 1255 và 257

Ta có : 1255 = (53)5 = 53.5 = 515

           257 = (52)7 = 52.7 = 514

Vì 515 > 514 nên 1255 > 257

c) 540 và 62010 

Ta có : 540 = 54.10 = (54)10 = 62510

Vì 62510 > 62010 nên 540 > 62010

4 tháng 10 2018
  •  Về phần so sánh hai lũy thừa thi bạn phải làm thế nào cho nó cùng cơ số hoặc cùng số mũ. Sau đó áp dụng quy tắc

Với \(a>b\Rightarrow a^m>b^m\) và ngược lại với a < b (đối với cùng số mũ) hoặc Với \(m>n\Rightarrow a^m>a^n\) và ngược lại với m < n (đối với cùng cơ số)

  • Tiếp theo,về dạng: \(A=2+2^2+2^3+...+2^{900}\). Bạn có thấy tất cả cơ số đều là 2 đúng không? Vì chúng ta nhân tất cả cho 2. Được: \(2A=2^2+2^3+2^4+...+2^{901}\)

Sau đó lấy \(2A-A\) được: \(A=2^{901}-2\) (Do 2A - A = A)

Các dạng khác làm tương tự!

13 tháng 10 2018

\(S=1+2+2^2+...+2^{99}\)

\(S=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{98}+2^{99}\right)\)

\(S=3+2^2.3+...+2^{98}.3\)

\(=3\left(1+2^2+...+2^{98}\right)⋮3\)

17 tháng 12 2021

=3e+127

17 tháng 12 2021

\(2A\) = 2+2^2+.....+2^100

2S-S=(2-2)+(2^2-2^2)+......+2^100-1

S=2^100-1

A = S + 1 = 2^100 -  1 + 1 = 2^100

Vậy A là 1 lũy thừa của 2 (đpcm)       

3 tháng 1 2016

Cần gấp j ai mà suy nghĩ kịp chứ.

3 tháng 1 2016

100...000 :218 =518

Vậy 3x + 3 =18

Suy ra n = 5