K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2017

Câu a) có 2 trường hợp nha bn

TH1

n là số lẻ thì (n+10) là số lẻ và (n+17) là số chẵn => (n+10)(n+17) là số chẵn hay nói cách khác (n+10)(n+17) chia hết cho 2

TH2

n là số chẵn thì (n+10) là số chẵn và (n+17) là số lẻ => (n+10)(n+17) là số chẵn hay nói cách khác (n+10)(n+17) là chia hết cho 2

Vậy (n+10)(n+17) chia hết cho 2

Câu b)

Ta có \(a^3+b^3+c^3-a+b+c=a\left(a-1\right)\left(a+1\right)+b\left(b-1\right)\left(b+1\right)+c\left(c-1\right)\left(c+1\right)\)

Mà \(a\left(a-1\right)\left(a+1\right)\)và \(b\left(b-1\right)\left(b+1\right)\)và \(c\left(c-1\right)\left(c+1\right)\) là 3 số liên tiếp

Nên \(a\left(a-1\right)\left(a+1\right)\)và \(b\left(b-1\right)\left(b+1\right)\)và \(c\left(c-1\right)\left(c+1\right)\)chia hết cho 2 và 3 => chia hết cho 6

Ta có \(a^3+b^3+c^3-a+b+c\)chia hết cho 6 mà \(a^3+b^3+c^3\)chia hết cho 6 

Vậy \(a+b+c\)chia hết cho 6

28 tháng 9 2016

Ta có:

\(a+b⋮6\)

\(\Rightarrow a⋮6,b⋮6\)

\(\Rightarrow a^3⋮6,b^3⋮6\)

\(\Rightarrow a^3+b^3⋮6\left(đpcm\right)\)

Vậy \(a^3+b^3⋮6\)

28 tháng 9 2016

Ta có: a3=a.a.a

           b3=b.b.b

Ta thấy: a+b nên (a+b)(a+b)(a+b) chia hết cho 6

Vậy a3+b3 chia hết cho 6.

Tick mik nhiều nhe!hihi

5 tháng 8 2017

mình biết mỗi bài 4:

A={2007}

mình đi xin bn đó

6 tháng 8 2017

cảm ơn bạn Xử Nữ các bạn khác giúp mình với

17 tháng 7 2016

1) 

a) 1+5+5^2+5^3+....+5^101 

=(1+5)+(5^2+5^3)+....+(5^100+5^101)

=6+5^2.(1+5)+...+5^100(1+5)

=6+5^2.6+...+5^100.6 chia hết cho 6 , vì mỗi số hạng đều chia hết cho 6 

b) 2+2^2+2^3+...+2^2016

=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+1^10)+....+(2^2012+2^2013+2^2014+2^2015+2^2016)

=2.31+2^6.31+...+2^2012.31 chia hết cho 31

Tương tự như câu a lên mk rút gọn 

2) còn bài a kì quá abc deg là sao nhỉ 

b) abc chia hết cho 8 nên a ; b hoặc c chia hết cho 8 

bạn nghĩ thử đi bài 2b dễ lắm nếu ko bt thì hỏi lại 

 

 

 

29 tháng 10 2016

b) \(\left(a+b\right)\left(b+c\right)\left(c+a\right)-2abc\\ =abc+ac^2+a^2b+a^2c+cb^2+ab^2+bc^2+abc-2abc\\ =ac^2+a^2b+a^2c+cb^2+ab^2+bc^2\)

\(=ab\left(a+b\right)+ac\left(a+c\right)+bc\left(b+c\right)=ab\left(a+b+c\right)+ac\left(a+b+c\right)+bc\left(a+b+c\right)-3abc\\ \)\(=\left(a+b+c\right)\left(ab+ac+bc\right)-3abc\)

Vì a+b+c chia hết cho 6 => (a+b+c)(ab+ac+bc) chia hết cho 6

Vì a+b+c chia hết cho 6 nên nó tồn tại ít nhất 1 số chẵn => 3abc chia hết cho 6

=> (a+b)(b+c)(c+a)-2abc chia hết cho6

30 tháng 10 2016

đăng 2 câu giải 1 câu

Giúp mị vs, cần rất gấpCho A = 2.4.6.8.10.12 - 40. Hỏi A có chia hết cho 6, 8, 20 không, vì sao?Khi chia số tự nhiên a cho 36 ta được số dư là 12. Hỏi a có chia hết cho 4, 9, không, vì sao?Cho a chia hết cho c và b chia hết cho c. Chứng minh rằng : ma+nb chia hết cho c ' ma - nb chia hết cho c với m,n thuộc NChứng mình rằng tổng của ba số tự nhiên liên tiếp chia hết cho 3, tổng của 5 số tự nhiên liên tiếp...
Đọc tiếp

Giúp mị vs, cần rất gấp

Cho A = 2.4.6.8.10.12 - 40. Hỏi A có chia hết cho 6, 8, 20 không, vì sao?

Khi chia số tự nhiên a cho 36 ta được số dư là 12. Hỏi a có chia hết cho 4, 9, không, vì sao?

Cho a chia hết cho c và b chia hết cho c. Chứng minh rằng : ma+nb chia hết cho c ' ma - nb chia hết cho c với m,n thuộc N

Chứng mình rằng tổng của ba số tự nhiên liên tiếp chia hết cho 3, tổng của 5 số tự nhiên liên tiếp không chia hết cho 5.

Chứng minh rằng :

a) Tổng của ba số chẵn liên tiếp thì chia hết cho 6

b) Tổng của ba số lẻ liên tiếp thì không chia hết cho 6

c) Nếu a chia hết cho b và b chia hết cho c thì a chia hết cho c

d) P = a + a2 + a+....+ a2n chia hết cho a + 1, n thuộc N

e) Nếu a và b chia cho 7 có cùng một số dư thì hiệu a - b chia hết cho 7

Giúp mk lẹ lẹ đi, mk cần rất gấp gấp lắm luôn, mai kiểm tra 45' mà còn mấy bài này ko bt cách giải.

2
9 tháng 10 2019

ê bạn là antifan hay ARMY thế hở, mà nếu là ARMY thì sao lại để logo thế kia, còn nếu là anti í thì sao lại có chữ ARMY dưới phần logo và nickname hở, m là gì để tao còn biết.

29 tháng 9 2021

A chia hết cho 8 và 20, nhưng ko chia hết cho 6

4 tháng 8 2016

2.

a) Ta có: \(\frac{n+6}{n}=\frac{n}{n}+\frac{6}{n}=1+\frac{6}{n}\)

Để n + 6 chia hết cho n thì \(\frac{6}{n}\) phải là số tự nhiên

\(\Rightarrow n\in\text{Ư}\left(6\right)=\left\{1;2;3;6\right\}\)

Vậy \(n\in\left\{1;2;3;6\right\}\)

c) Ta có: \(\frac{n+4}{n+1}=\frac{n+1+3}{n+1}=\frac{n+1}{n+1}+\frac{3}{n+1}=1+\frac{3}{n+1}\)

Để n + 4 chia hết cho n + 1 thì \(\frac{3}{n+1}\) phải là số tự nhiên

\(\Rightarrow n+1\in\text{Ư}\left(3\right)=\left\{1;3\right\}\)

\(\Rightarrow n\in\left\{0;2\right\}\)

Vậy \(n\in\left\{0;2\right\}\)