Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2+10y^2+2xy-6y+5\)
\(A=x^2+2xy+y^2+9y^2-6y+1+4\)
\(A=\left(x+y\right)^2+\left(3y+1\right)^2+4\)
Mà \(\hept{\begin{cases}\left(x+y\right)^2\ge0\\\left(3y+1\right)^2\ge0\\4>0\end{cases}}\)
=> A luôn dương với mọi x ; y
\(B=x-x^2-1\)
\(B=-\left(x^2-x+1\right)\)
\(B=-\left(x^2-x+\frac{1}{4}+\frac{3}{4}\right)\)
\(B=-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]\)
\(B=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\)
Mà \(\hept{\begin{cases}-\left(x-\frac{1}{2}\right)^2\le0\\-\frac{3}{4}< 0\end{cases}}\)
=> B luôn âm với mọi x
bn kham khảo ở đây nha
Câu hỏi của Mimi - Toán lớp 8 | Học trực tuyến
vào thống kê hoie đáp của mình có chữ màu xanh trng câu hỏi này nhấn zô đó sẽ ra
hc tốt:~:B~
a) \(x^2-8x+2018=x^2-8x+16+2002=\left(x^2-8x+16\right)+2002=\left(x-4\right)^2+2002\)
Vì \(\left(x-4\right)^2\ge0\)
\(\Rightarrow\left(x-4\right)^2+2002\ge2002\)(Luôn Luôn Dương)
b)\(3x^2+6x+7=3x^2+6x+3+4=3\left(x^2+2x+1\right)+4=3\left(x+1\right)^2+4\)
Vì \(3\left(x+1\right)^2\ge0\)
\(\Rightarrow3\left(x+1\right)^2+4\ge4\)(Luôn Luôn Dương)
c)\(3x^2-6x+5=3x^2-6x+3+2=3\left(x^2-2x+1\right)+2=3\left(x-1\right)^2+2\)
Vì \(3\left(x-1\right)^2\ge0\)
\(\Rightarrow3\left(x-1\right)^2+2\ge2\)(Luôn Luôn Dương)
d)\(x^2-8x+19=x^2-8x+16+3=\left(x^2-8x+16\right)+3=\left(x-4\right)^2+3\)
Vì \(\left(x-4\right)^2\ge0\)
\(\Rightarrow\left(x-4\right)^2+3\ge3\)(Luôn Luôn Dương)
Chứng minh bt k phụ thuộc vào biến:
a) \(A=\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)
\(=6x^2+33x-10x-55-6x^2-14x-9x-21=-76\)
Vậy giá trị của A k phụ thuộc vào biến
b) \(\left(x-1\right)^2+\left(x+1\right)^2-2\left(x+1\right)\left(x-1\right)\)
\(=\left[\left(x-1\right)-\left(x+1\right)\right]^2=\left(x-1-x-1\right)^2=-2^2=4\)
Vậy giá trị của bt B k phụ thuộc vào biến
Chứng minh luôn luôn dương:
a) \(A=x\left(x-6\right)+10=x^2-6x+9+1=\left(x-3\right)^2+1\)
Vì: \(\left(x-3\right)^2\ge0,\forall x\)
=> \(\left(x-3\right)^2+1>0,\forall x\)
=>đpcm
b) \(B=x^2-2x+9y^2-6y+3=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1=\left(x-1\right)^2+\left(3y-1\right)^2+1\)
Vì: \(\left(x-1\right)^2\ge0,\forall x;\left(3y-1\right)^2\ge0,\forall y\)
=> \(\left(x-1\right)^2+\left(3y-1\right)^2\ge0,\forall x,y\)
=> \(\left(x-1\right)^2+\left(3y-1\right)^2+1>0\)
=>đpcm
a, chỉ có luôn ko dương thôi bạn ạ =)))
\(3x-x^2-7=-\left(x^2-3x\right)-7=-\left(x^2-2.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)-7\)
\(=-\left(x-\frac{3}{2}\right)^2-\frac{19}{4}\le-\frac{19}{4}< 0\forall x\)
Vậy biểu thức trên luôn âm với mọi x
b, \(-x^2+6x-10=-\left(x^2-6x+9-9\right)-10=-\left(x-3\right)^2-1\le-1< 0\forall x\)
Vậy biểu thức trên luôn âm với mọi x
luôn âm chứ bạn :)\
3x - x2 - 7 = -( x2 - 3x + 9/4 ) - 19/4 = -( x - 3/2 )2 - 19/4 ≤ -19/4 < 0 ∀ x ( đpcm )
6x - x2 - 10 = -( x2 - 6x + 9 ) - 1 = -( x - 3 )2 - 1 ≤ -1 < 0 ∀ x ( đpcm )
Ta có : 9x2 + 12x + 15
= (3x)2 + 2.3x.2 + 4 + 11
= (3x + 2)2 + 11
Mà (3x + 2)2 \(\ge0\forall x\)
Nên (3x + 2)2 + 11 \(\ge11\forall x\)
Vậy Bmin = 11 dấu "=" sảy ra khi và chỉ khi x = \(-\frac{2}{3}\)
Ta có : A = x2 - 4x - 6
= x2 - 4x + 4 - 10
= (x - 2)2 - 10
Mà (x - 2)2 \(\ge0\forall x\)
=> (x - 2)2 - 10 \(\ge-10\forall x\)
Vậy Amin = -10 dấu "=" sảy ra khi và chỉ khi x = 2
\(A=4x^2-12x+11\)
\(A=4x^2-12x+9+2\)
\(A=\left(2x-3\right)^2+2\)
Nhận xét: \(\left(2x-3\right)^2\ge0\forall x\)
\(\Rightarrow\left(2x-3\right)^2+2\ge2\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left(2x-3\right)^2=0\Rightarrow x=\frac{3}{2}\)
Vậy \(minA=2\Leftrightarrow x=\frac{3}{2}\)
a) \(A=x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\) với mọi x
b) \(B=x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\) với mọi x
c) \(x^2+xy+y^2+1=\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2+1>0\) với mọi x,y
d) bạn kiểm tra lại đề câu d) nhé:
\(x^2+4y^2+z^2-2x-6y+8z+15\)
\(=\left(x-1\right)^2+\left(2y-\frac{6}{4}\right)^2+\left(z+4\right)^2-\frac{13}{4}\)