Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(A=x^2+2x+2=\left(x+1\right)^2+1\ge1>0\left(\forall x\right)\)
2) \(B=x^2+6x+11=\left(x+3\right)^2+2\ge2>0\left(\forall x\right)\)
3) \(C=4x^2+4x-2=\left(2x+1\right)^2-2\ge-2\) chưa chắc nhỏ hơn 0
4) \(D=-x^2-6x-11=-\left(x+3\right)^2-2\le-2< 0\left(\forall x\right)\)
5) \(E=-4x^2+4x-2=-\left(2x-1\right)^2-1\le-1< 0\left(\forall x\right)\)
1. \(A=x^2+2x+2=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(x+1\right)^2+1\ge1\)
=> Đpcm
2. \(B=x^2+6x+11=\left(x+3\right)^2+2\)
Vì \(\left(x+3\right)^2\ge0\forall x\)\(\Rightarrow\left(x+3\right)^2+2\ge2\)
=> Đpcm
3. \(C=4x^2+4x-2=-\left(4x^2-4x+2\right)\)
\(=-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x-\frac{1}{2}\right)^2+1\ge1\)
\(\Rightarrow-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\le1\)
=> Đpcm
4,5 làm tương tự
a,2x2+8x+20=2(x2+4x)+20
=2(x2+4x+4)+20-4.2
=2(x+2)2+12
Ta có : 2(x+2)2 \(\ge0với\forall x\)
12 > 0
\(\Rightarrow\)2(x+2)2+12>0 với \(\forall x\)
\(\Rightarrow\)2x2+8x+20>0 với \(\forall\)x
b,x4-3x2+5
=(x4-3x2)+5
=(x4-2.\(\frac{3}{2}\)x2+\(\frac{9}{4}\))+5-\(\frac{9}{4}\)
=(x2-\(\frac{3}{2}\))2+\(\frac{11}{4}\)
Có : (x2-3/2)2\(\ge0với\forall x\)
\(\frac{11}{4}\)>0
\(\Rightarrow\)(x2-\(\frac{3}{2}\))2+\(\frac{11}{4}>0với\forall x\)
a ) \(2x^2-5x+4\)
\(=2\left(x^2-\dfrac{5}{2}x+2\right)\)
\(=2\left(x^2-2x.\dfrac{5}{4}+\dfrac{25}{16}+\dfrac{7}{16}\right)\)
\(=2\left[\left(x-\dfrac{5}{4}\right)^2+\dfrac{7}{16}\right]\)
\(=2\left(x-\dfrac{5}{4}\right)^2+\dfrac{7}{8}\)
Do\(2\left(x-\dfrac{5}{4}\right)^2\ge0\forall x\Rightarrow2\left(x-\dfrac{5}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}>0\left(đpcm\right)\)
b ) \(-x^2+4x-5\)
\(=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-4x+4+1\right)\)
\(=-\left[\left(x-2\right)^2+1\right]\)
\(=-\left(x-2\right)^2-1\)
Do \(-\left(x-2\right)^2\le0\forall x\Rightarrow-\left(x-2\right)^2-1\le-1< 0\left(đpcm\right)\)
c ) Sai đề : Đây là đề theo cách sửa của mik :
\(-4+3x-3x^2\)
\(=-3\left(x^2-x+\dfrac{4}{3}\right)\)
\(=-3\left(x^2-x+\dfrac{1}{4}+\dfrac{13}{12}\right)\)
\(=-3\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{13}{12}\right]\)
\(=-3\left(x-\dfrac{1}{2}\right)^2-\dfrac{13}{4}\)
Do \(-3\left(x-\dfrac{1}{2}\right)^2\le0\forall x\)
\(\Rightarrow-3\left(x-\dfrac{1}{2}\right)^2-\dfrac{13}{4}\le\dfrac{-13}{4}< 0\left(đpcm\right)\)
E=4x2+5x+5>0 với mọi x
=(4x2 +4x+1)+4
=(2x+1)\(^2\)+4
Với mọi x thuộc R thì (2x+1)\(^2\)>=0
Suy ra(2x+1)\(^2\)+4>=4>0
Hay E>0 với mọi x thuộc R(đpcm)
F=5x2-6x+7>0 với mọi x
=(5x\(^2\)-6x+\(\dfrac{36}{25}\))+\(\dfrac{139}{25}\)
=5\(\left(x-\dfrac{6}{5}\right)^2\)+\(\dfrac{139}{25}\)
Với mọi x thuộc R thì 5\(\left(x-\dfrac{6}{5}\right)^2\)>=0
Suy ra 5\(\left(x-\dfrac{6}{5}\right)^2\)+\(\dfrac{139}{25}\)>0
Hay F >0 với mọi x(đpcm)
G=-x2+5x -6<0 với mọi x
=-(x2-5x+6,25)+0,25
=-(x-2,5)2 +0,25
Với mọi x thuộc R thì -(x-2,5)2 <=0
Suy ra -(x-2,5)2 +0,25<0
Hay G<0 với mọi x (đpcm)
chúc bạn học tốt ạ
a) Ta có: x2 + 4x +5 = ( x2 + 4x + 4 ) +1 = (x+2)2 + 1 >= 1 >0 với mọi x
b) Ta có : 4x2 - 4x +2 = ( 4x2 - 4x +1 ) + 1 = (2x+1)2 > 0 với mọi x
c) Ta có : x2 - 3x +4 = [x2 - 2.(3/2)x + (9/4) ]+ (7/4) = ( x - 3/2 )2 + 7/4 >0 với mọi x
mấy câu sau lm tương tự: sử dụng hằng đẳng thức tách thành dạng một bình phương cộng vs 1 số
a) x2 + 4x + 5 = x2 + 2 . 2x + 22 + 1 = (x + 2)2 + 1\(\ge\)1 > 0
b) 4x2 - 4x + 2 = (2x)2 - 2 . 2x + 1 + 1 = (2x - 1)2 + 1\(\ge\)1 > 0
c) x2 - 3x + 4 = x2 - 2 . 1,5x + 1,52 + 1,75 = (x - 1,5)2 + 1,75 \(\ge\)1,75 > 0
d) x2 - x + 1 = x2 + 2 . 0,5x + 0,52 + 0,75 = (x + 0,5)2 + 0,75\(\ge\)0,75 > 0
e) x2 - 5x + 7 = x2 - 2 . 2,5x + 2,52 + 0,75 = (x - 2,5)2 + 0,75\(\ge\)0,75 > 0
A = (3x - 5)(2x + 11) - (2x + 3)(3x + 7)
A = 3x(2x + 11) - 5(2x+ 11) - 2x(3x + 7) - 3(3x + 7)
A= 6x2 + 33x - 10x - 55 - 6x2 - 14x - 9x - 21
A = (6x2 - 6x2) + (33x - 10x - 14x - 9x) + (-55 - 21) = -76 => không phụ thuộc vào biến x (đpcm)
B = (2x + 3)(4x2 - 6x + 9) - 2(4x3 - 1)
= 2x(4x2 - 6x + 9) + 3(4x2 - 6x + 9) - 8x3 + 2
= 8x3 - 12x2 + 18x + 12x2 - 18x - 27 - 8x3 + 2
= (8x3 - 8x3) + (-12x2 + 12x2) + (18x - 18x) + (-27 + 2) = -25 => không phụ thuộc vào biến x (đpcm)
A= ( 3x - 5 ) ( 2x+11) - (2x+3)(3x+7)
=\(6x^2+23x-55-\left(6x^2+23x+21\right)\)
=\(6x^2+23x-55-6x^2-23x-21\)
= -76
Vậy A không phụ thuộc vào x
\(a)\)\(VP=x^3+3x^2+2x\)
\(VP=x\left(x^2+3x+2\right)\)
\(VP=x\left[\left(x^2+x\right)+\left(2x+2\right)\right]\)
\(VP=x\left[x\left(x+1\right)+2\left(x+1\right)\right]\)
\(VP=x\left(x+1\right)\left(x+2\right)\) ( đpcm )
Chúc bạn học tốt ~
a) x(x+1)(x+2)=(x2+x)(x+2)=x3+2x2+x2+2x=x3+3x2+3x
b)
(3x - 2)(4x - 5) - (2x - 1)(6x + 1) = 0
12x2 - 15x - 8x + 10 - 12x2 - 2x + 6x + 1 = 0
- 19x = - 11
x = 11/19
a, \(A=2x^2+4x+5=2x^2+4x+2+3\)
\(=2\left(x+1\right)^2+3>0\)
\(\Rightarrowđpcm\)
b, \(B=-3x^2+6x-7=-3x^2+6x-3-4\)
\(=-3\left(x-1\right)^2-4< 0\)
\(\Rightarrowđpcm\)
\(A=2x^2+4x+5\)
\(\Rightarrow A=2x^2+4x+2+3\)
\(\Rightarrow A=2\left(x+1\right)^2+3\)
\(\Rightarrow A>0\left(ĐPCM\right)\)