Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng nếu a, b, c là ba cạnh của một tam giác thì 2a2b2 + 2b2c2 + 2a2c2 - a4 - b4 - c4 > 0
\(a^4+b^4+c^4=2a^2b^2+2a^2c^2+2b^2c^2\)
\(\Leftrightarrow a^4+b^4+c^4-2a^2b^2-2a^2c^2-2b^2c^2=0\)
\(\Leftrightarrow\left(a^4-2a^2b^2+b^4\right)+\left(b^4-2b^2c^2+c^4\right)+\left(c^4-2c^2a^2+a^4\right)-a^4-b^4-c^4=0\)
\(\Leftrightarrow\left(a^2-b^2\right)^2+\left(c^2-b^2\right)^2+\left(c^2-a^2\right)^2-a^4-b^4-c^4=0\)
\(\Leftrightarrow\left(a-b\right)^2c^2+a^2\left(b+c\right)^2+b^2\left(c+a\right)^2-a^4-b^4-c^4=0\)
\(\Leftrightarrow c^2\left[\left(a-b\right)^2-\left(a+b\right)^2\right]+a^2\left[\left(b+c\right)^2-a^2\right]+b^2\left[\left(c+a\right)^2-b^2\right]=0\)
\(\Leftrightarrow c^2\left[\left(a-b\right)^2-\left(a+b\right)^2\right]+a^2\left[\left(b+c\right)^2-\left(c-b\right)^2\right]+b^2\left[\left(c+a\right)^2-\left(c-a\right)^2\right]=0\)
\(\Leftrightarrow-4abc^2+4a^2bc+4ab^2c=0\)
\(\Leftrightarrow4abc\left(a+b-c\right)=0\)
\(\Leftrightarrow0=0\)(luôn đúng)
=>đpcm
Lời giải:
Xét:
\(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2a^2c^2\)
\(=(a^4+b^4+2a^2b^2)+c^4-2c^2(b^2+a^2)-4a^2b^2\)
\(=(a^2+b^2)^2+(c^2)^2-2c^2(a^2+b^2)-(2ab)^2\)
\(=(a^2+b^2-c^2)^2-(2ab)^2=(a^2+b^2-c^2-2ab)(a^2+b^2-c^2+2ab)\)
\(=[(a-b)^2-c^2][(a+b)^2-c^2]\)
\(=(a-b-c)(a-b+c)(a+b-c)(a+b+c)\)
\(\Rightarrow 2a^2b^2+2b^2c^2+2a^2c^2-a^4-b^4-c^4=(b+c-a)(a-b+c)(a+b-c)(a+b+c)\)
Vì $a,b,c$ là 3 cạnh tam giác nên $b+c-a,a-b+c,a+b-c>0$ theo BĐT tam giác. Mặt khác hiển nhiên $a+b+c>0$
Do đó:
\(2a^2b^2+2b^2c^2+2a^2c^2-a^4-b^4-c^4=(b+c-a)(a-b+c)(a+b-c)(a+b+c)>0\)
Ta có đpcm.
2a2b2+2a2c2+2b2c2-a4-b4-c4
=4a2b2-(a4+2a2b2+b4)+(2b2c2+2a2c2)-c4
=2(ab)2-(a+b)2+2c2(a2+b2)+c4
=2(ab)2-[(a+b)2-2c2(a2+b2)+c4]
=2(ab)2-(b2+a2-c2)2
=[(a+b)2-c2][-(a-b)2+c2]
=(a+b-c)(a+b+c)(c-a+b)(a+c-b)
\(2a^2b^2+2a^2c^2+2b^2c^2-a^4-b^4-c^4\)
\(=4a^2b^2-\left(a^4+2a^2b^2+b^4\right)+\left(2b^2c^2+2a^2c^2\right)-c^4\)
\(=2\left(ab\right)^2-\left(a+b\right)^2+2c^2\left(a^2+b^2\right)+c^4\)
\(=2\left(ab\right)^2-\left[\left(a+b\right)^2-2c^2\left(a^2+b^2\right)+c^4\right]\\ =2\left(ab\right)^2-\left(b^2+a^2-c^2\right)^2\)
=\(\left[\left(a+b\right)^2-c^2\right]\left[-\left(a-b\right)^2+c^2\right]\\ =\left(a+b+c\right)\left(a+b+c\right)\left(c-a+b\right)\left(a+c-b\right)\)
rút gọn\(\frac{1}{x-2}+\frac{x^2-x-2}{x^2-7x+10}-\frac{2x-4}{x-5}\)