Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a ) Ta có : A là tổng các số hạng chia hết cho 3 => A \(⋮\)3
A có 3 không chia hết cho 9 => A không chia hết cho 9
=> A \(⋮\)3 nhưng không chia hết cho 9
=> A không phải là số chính phương
Bài 2:
Gọi 2 số lẻ có dạng 2k+1 và 2q+1 (k,q thuộc N)
Có : A = (2k+1)^2+(2q+1)^2
= 4k^2+4k+1+4q^2+4q+1
= 4.(k^2+k+q^2+q)+2
Ta thấy A chia hết cho 2 nguyên tố
Lại có : 4.(q^2+q+k^2+k) chia hết cho 4 mà 2 ko chia hết cho 4 => A ko chia hết cho 4
=> A chia hết cho 2 nguyên tố mà A ko chia hết cho 4 = 2^2
=> A ko là số chính phương
=> ĐPCM
A là số chính phương:
A=5+52+53+...+5100
=5(1+5)+53(1+5)+55(1+5)+...+599(1+6)
=5.6+53.6+55.6+...+599.6
=6.(5+53+55+57+...+599)
Vì 6 là số chính phương nên A là số chính phương
204^ 2chia hết cho 3
203^ đồng dư 1 mod3
202^2 đồng dư mod3
201^2 chia hết cho 3
Suy ra A chia 3 dư 2 , suy ra A = 3k +2
Mà số cp ko có dạng 3k +2 nên A không là số cp