K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2016

\(\sqrt{2=1.414213....}\)ko thể biểu diễn dạng tỉ số => là số vô tỷ => k cho mk

17 tháng 6 2016

Do chỉ có số 1,4142135623730950488016887... bình phương lên bằng 2. Mà 1,4142135623730950488016887... là số vô tỉ nên \(\sqrt{2}\) là số vô tỉ. Mk nghĩ thế thôi nhưng ko biết đúng ko.

Ta có : \(\sqrt{a^2}=a\)

\(\Rightarrow\sqrt{a}\ne a\)

\(\sqrt{a}\)vô tỉ

6 tháng 3 2020

Trả lời:

+ Giả sử \(\sqrt{a}\notin I\)

\(\Rightarrow\sqrt{a}\inℚ\)

\(\Rightarrow a=\frac{m}{n}\)với\(\left(m,n\right)=1;m,n\inℕ\)

+ Vì a không là số chính phương

\(\Rightarrow\sqrt{a}\notinℕ\)

\(\Rightarrow\frac{m}{n}\notinℕ\)

\(\Rightarrow n>1\)

+ Vì \(\sqrt{a}=\frac{m}{n}\)

\(\Rightarrow a=\frac{m^2}{n^2}\)

\(\Rightarrow m^2=an^2\)

+ Vì \(n>1\)

\(\Rightarrow\)Giả sử n có ước nguyên tố là p

\(n\inℕ\)

\(m^2=an^2\)

\(\Rightarrow m⋮p\)

\(\Rightarrow\)m,n có ƯC là p (Trái với giả thiết (m,n) = 1)

\(\Rightarrow\)Giả sử \(\sqrt{a}\notin I\)sai

\(\Rightarrow\sqrt{a}\in I\)

Vậy nếu số tự nhiên a không phải là số chính phương thì\(\sqrt{a}\)là số vô tỉ.

Hok tốt!

Good girl

13 tháng 8 2016

Giả sử tổng của một số hữu tỉ và một số vô tỉ là một số hữu tỉ.

Gọi a+b=c trong đó a,c là số hữu tỉ và b là số vô tỉ ⇒⇒ b=c-a mà a và c là các số hữu tỉ ⇒⇒ a-c là số hữu tỉ ⇒⇒ b là số hữu tỉ(trái giả thiết). Vậy giả sử sai⇒⇒ đpcm

4 tháng 9 2016

Giả sử tổng của một số hữu tỉ và một số vô tỉ là một số hữu tỉ.

Gọi a+b=c trong đó a,c là số hữu tỉ và b là số vô tỉ ⇒⇒ b=c-a mà a và c là các số hữu tỉ ⇒⇒ a-c là số hữu tỉ ⇒⇒ b là số hữu tỉ(trái giả thiết). Vậy giả sử sai⇒⇒ đpcm

1. Tập hợp số tự nhiên, kí hiệu NN={0, 1, 2, 3, ..}.2. Tập hợp số nguyên, kí hiệu là ZZ={…, -3, -2, -1, 0, 1, 2, 3, …}.Tập hợp số nguyên gồm các phân tử là số tự nhiên và các phân tử đối của các số tự nhiên.Tập hợp các số nguyên dương kí hiệu là N*3. Tập hợp số hữu tỉ, kí hiệu là QQ={ a/b;  a, b∈Z, b≠0}Mỗi số hữu tỉ có thể biểu diễn bằng một số thập phân hữu hạn hoặc...
Đọc tiếp

1. Tập hợp số tự nhiên, kí hiệu N

N={0, 1, 2, 3, ..}.

2. Tập hợp số nguyên, kí hiệu là Z

Z={…, -3, -2, -1, 0, 1, 2, 3, …}.

Tập hợp số nguyên gồm các phân tử là số tự nhiên và các phân tử đối của các số tự nhiên.

Tập hợp các số nguyên dương kí hiệu là N*

3. Tập hợp số hữu tỉ, kí hiệu là Q

Q={ a/b;  a, b∈Z, b≠0}

Mỗi số hữu tỉ có thể biểu diễn bằng một số thập phân hữu hạn hoặc vô hạn tuần hoàn.

4. Tập hợp số thực, kí hiệu là R

Một số được biểu diễn bằng một số thập phân vô hạn không tuần hoàn được gọi là một số vô tỉ. Tập hợp các số vô tỉ kí hiệu là I. Tập hợp số thực gồm các số hữ tỉ và các số vô tỉ.

= Q  I.

5. Một số tập hợp con của tập hợp số thực.

+ Đoạn [a, b] ={x ∈ R / a ≤ x ≤ b}

+ Khoảng (a; b) ={x ∈ R / a < x < b}

– Nửa khoảng [a, b) = {x ∈ R / a ≤ x < b}

– Nửa khoảng (a, b] ={x ∈ R / a < x ≤ b}

– Nửa khoảng [a; +∞) = {x ∈ R/ x ≥ a}

– Nửa khoảng (-∞; a] = {x ∈ R / x ≤a}

– Khoảng (a; +∞) = {x ∈ R / x >a}

– Khoảng (-∞; a) = {x ∈R/ x<a}.

 
Luyện trắc nghiệmTrao đổi bài
3
3 tháng 8 2016

nè pn bị dảnh ak

3 tháng 8 2016

choán váng

NM
11 tháng 9 2021

ta có :

\(\hept{\begin{cases}-x^2-3< 0\\-\left(x-1\right)^2-5< 0\end{cases}\forall x\Rightarrow A>0}\forall x\)

hơn nữa nếu x hữu tỉ thì A hữu tỉ

khi đó A là số hữu tỉ dương

29 tháng 5 2017

Đặt A = \(\sqrt{n}+\sqrt{n+4}\)

=> \(A^2=n+n+4+2\sqrt{n\left(n+4\right)}\) = \(2n+4+2\sqrt{n\left(n+4\right)}\)

Vì n nguyên dương nên 2n + 4 nguyên dương

Mặt khác n(n+4) >0 , không là số chính phương nên \(\sqrt{n\left(n+4\right)}\) , không phải số nguyên dương 

=> \(2\left(\sqrt{n\left(n+4\right)}\right)\) không phải số nguyên dương

=> A2 không phải số nguyên dương => A không phải số nguyên dương ( đpcm)

============================

29 tháng 5 2017

Các bạn giải nhanh nha! 

Ngày mai lúc 8h 30 (hoặc sớm hơn) mình sẽ chấm và đưa ra đáp án.