K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2019

Để chứng minh được đẳng thức đó, ta cần chứng minh đẳng thức: 13 + 23 + 33 + ... + 20193 = (1 + 2 + 3 + ... + 2019)2

Ta có:

(1 + 2 + 3 + ... + 2019)2
\(=\left(\frac{2019.2020}{2}\right)^2\)
\(=\left(\frac{1.2}{2}\right)^2+\left[\left(\frac{2.3}{2}\right)^2-\left(\frac{1.2}{2}\right)^2\right]+\left[\left(\frac{3.4}{2}\right)^2-\left(\frac{2.3}{2}\right)^2\right]+...+\left[\left(\frac{2019.2020}{2}\right)^2-\left(\frac{2018.2019}{2}\right)^2\right]\left(1\right)\)

Mặt khác, với số tự nhiên n lớn hơn 1 ta có:

\(\left(\frac{n\left(n+1\right)}{2}\right)^2-\left(\frac{\left(n-1\right)n}{2}\right)^2=\left(\frac{n\left(n+1\right)}{2}-\frac{\left(n-1\right)n}{2}\right)\left(\frac{n\left(n+1\right)}{2}+\frac{\left(n-1\right)n}{2}\right)=\frac{2n}{2}.\frac{2n.n}{2}=n^3\)

Do đó biểu thức (1) chính bằng 13 + 23 + 33 + ... + 20193

Vậy ta có đpcm

20 tháng 4 2019

M<1/1.2+1/2.3+...+1/2019.2020=1-1/2020<1<2\(\sqrt{2}\)
 

13 tháng 8 2019

bn có thể tham khảo ở sách vũ hữu binh nha

14 tháng 9 2020

Đề sai r bạn phải là \(2020\sqrt{2019}\)

NV
24 tháng 9 2019

Đề bài chắc chắn sai bạn

\(\sqrt{3+...+\sqrt{3}}>1\Rightarrow\sqrt{3+\sqrt{3+...+\sqrt{3}}}>\sqrt{3+1}=2\)

15 tháng 8 2019

\(\frac{1}{\sqrt{a+\sqrt{a^2-1}}}=\frac{1}{\sqrt{\sqrt{a^2}+\sqrt{a^2-1}}}=\frac{\sqrt{a-\sqrt{a^2-1}}}{\sqrt{1}}=\sqrt{a-\sqrt{a^2-1}}\)

17 tháng 7 2019

1) Ta có: \(2020^2=\left(2019+1\right)^2=2019^2+2.2019+1.\)

\(\Rightarrow1+2019^2=2020^2-2.2019\)

\(\Rightarrow M=\sqrt{1+2019^2+\frac{2019^2}{2020^2}}+\frac{2019}{2020}=\sqrt{2020^2-2.2019+\frac{2019^2}{2020^2}}+\frac{2019}{2020}\)

\(=\sqrt{2020^2-2.2020.\frac{2019}{2020}+\left(\frac{2019}{2020}\right)^2}+\frac{2019}{2020}\)

\(=\sqrt{\left(2020-\frac{2019}{2020}\right)^2}+\frac{2019}{2020}=2020-\frac{2019}{2020}+\frac{2019}{2020}\)

\(=2020\)

Vậy M=2020.

2) Xét  : \(k\in N;k\ge2\)ta có:

\(\left(1+\frac{1}{k-1}-\frac{1}{k}\right)^2=1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}+\frac{2}{k-1}-\frac{2}{\left(k-1\right)k}-\frac{2}{k}\)

                                          \(=1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}+\frac{2}{k-1}-\frac{2}{k-1}+\frac{2}{k}-\frac{2}{k}\)

\(\Rightarrow\left(1+\frac{1}{k-1}-\frac{1}{k}\right)^2=1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}\)

\(\Rightarrow\sqrt{1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}}=1+\frac{1}{k-1}+\frac{1}{k}\)

Cho \(k=3,4,...,2020.\)Ta có:

\(N=\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{1+\frac{1}{2019^2}+\frac{1}{2020^2}}\)

\(=\left(1+\frac{1}{2}-\frac{1}{3}\right)+\left(1+\frac{1}{3}-\frac{1}{4}\right)+...+\left(1+\frac{1}{2018}-\frac{1}{2019}\right)+\left(1+\frac{1}{2019}-\frac{1}{2020}\right)\)

\(=2018+\frac{1}{2}-\frac{1}{2020}=2018\frac{1009}{2020}\)

Vậy \(N=2018\frac{1009}{2020}.\)

9 tháng 12 2019

Ta có: \(\frac{1}{\left(k+1\right)\sqrt{k}+k\sqrt{k+1}}=\frac{\left(k+1\right)\sqrt{k}-k\sqrt{k+1}}{k\left(k+1\right)^2-k^2\left(k+1\right)}\)

\(=\frac{\sqrt{k\left(k+1\right)}\left(\sqrt{k+1}-\sqrt{k}\right)}{k^3+2k^2+k-k^3-k^2}\)

\(=\frac{\sqrt{k\left(k+1\right)}\left(\sqrt{k+1}-\sqrt{k}\right)}{k\left(k+1\right)}\)

\(=\frac{\sqrt{k+1}-\sqrt{k}}{\sqrt{k\left(k+1\right)}}=\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\)

Lần lượt thay k=1;2;...;2018 ta được:

\(\frac{1}{2\sqrt{1}+1\sqrt{2}}=\frac{1}{1}-\frac{1}{\sqrt{2}}\)

\(\frac{1}{3\sqrt{2}+2\sqrt{3}}=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\)

...

\(\frac{1}{2019\sqrt{2018}+2018\sqrt{2019}}=\frac{1}{\sqrt{2018}}-\frac{1}{\sqrt{2019}}\)

Cộng vế theo vế ta được:

\(C=1-\frac{1}{\sqrt{2019}}=...\)

9 tháng 12 2019
https://i.imgur.com/rbOpKwh.jpg