Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}=\frac{3}{2}\sqrt{6}+2\frac{\sqrt{6}}{3}-4\frac{\sqrt{6}}{2}\)
\(=\sqrt{6}\left(\frac{3}{2}+\frac{2}{3}-\frac{4}{2}\right)=\sqrt{6}.\frac{1}{6}\)
b) \(\left(x\sqrt{\frac{6}{x}}+\sqrt{\frac{2x}{3}}+\sqrt{6x}\right):\sqrt{6x}=\left(x.\frac{\sqrt{6x}}{x}+\frac{\sqrt{6x}}{3}+\sqrt{6x}\right):\sqrt{6x}\)
\(=1+\frac{1}{3}+1=2\frac{1}{3}\)
a) Biến đổi vế trái ta có:
\(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}\)
\(=\frac{3\sqrt{6}}{2}+\frac{2\sqrt{6}}{3}-\frac{4\sqrt{6}}{2}=\frac{9\sqrt{6}+4\sqrt{6}-12\sqrt{6}}{6}=\frac{\sqrt{6}}{6}=VP\)
Vậy đẳng thức trên đc chứng minh
b) Biến đổi vế trái ta có:
\(\left(x\sqrt{\frac{6}{x}}+\sqrt{\frac{2x}{3}}+\sqrt{6x}\right):\sqrt{6x}\)
\(=\left(x\sqrt{\frac{6}{x}}+\sqrt{\frac{2x}{3}}+\sqrt{6x}\right)\cdot\frac{1}{\sqrt{6x}}\)
\(=x\sqrt{\frac{6}{x}\cdot\frac{1}{6x}}+\sqrt{\frac{2x}{3}\cdot\frac{1}{6x}}+\sqrt{6x}\cdot\frac{1}{\sqrt{6x}}\)
\(=x\sqrt{\frac{1}{x^2}}+\sqrt{\frac{1}{9}}+1=1+\frac{1}{3}+1=2\frac{1}{3}=VP\)
Vậy đẳng thức trên đc chứng minh
\(\left(x\sqrt{\frac{6}{x}}+\sqrt{\frac{2x}{3}}+\sqrt{6x}\right):\sqrt{6x}=2\frac{1}{3}\)
\(\left(x\sqrt{\frac{6}{x}}+\sqrt{\frac{2x}{3}}+\sqrt{6x}\right):\sqrt{6x}=2\frac{1}{3}\) \(\left(x>0\right)\)
\(VT=\left(x\sqrt{\frac{6}{x}}+\sqrt{\frac{2x}{3}}+\sqrt{6x}\right):\sqrt{6x}\)
\(=\left(\sqrt{x^2.\frac{6}{x}}+\sqrt{\frac{6x}{3^2}}+\sqrt{6x}\right):\sqrt{6x}\)
\(=\left(\sqrt{6}+\frac{\sqrt{6x}}{3}+\sqrt{6x}\right):\sqrt{6x}\)
\(=\frac{7}{3}\sqrt{6x}\div\sqrt{6}\)
\(=\frac{7}{3}=2\frac{1}{3}\)
\(=VP\left(\text{đ}pcm\right)\)