Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3/ Chu vi hình chữ nhật:
\(\left(\dfrac{1}{4}+\dfrac{3}{10}\right)\cdot2=\dfrac{11}{10}\) (chưa biết đơn vị)
Diện tích hình chữ nhật:
\(\dfrac{1}{4}\cdot\dfrac{3}{10}=\dfrac{11}{20}\) (chưa biết đơn vị)
Gọi \(\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{100^2}\)là \(S\)
\(S=\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{100^2}\\ S>\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+...+\dfrac{1}{100\cdot101}\\ S>\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+...+\dfrac{1}{100}-\dfrac{1}{101}\\ S>\dfrac{1}{5}-\dfrac{1}{101}>\dfrac{1}{5}\)
Vậy \(S>\dfrac{1}{5}\)(đpcm)
1,=0 . [2017/2018+2018/2019]
=>0
2,TH1 x-3=0=>x=3
TH2 y-4=0=>y=4
3, -2/4 = -x/10 = 16/y
=>-1/2 = -x/10 = 16/y
=>-1/2 = -x/10 => -5/10 = -x/10 => x=5
-1/2 = 16/y => 16/-32 = 16/y => y = -32
a) Để phân số \(\dfrac{12}{n}\) có giá trị nguyên thì :
\(12⋮n\)
\(\Leftrightarrow n\inƯ\left(12\right)\)
\(\Leftrightarrow n\in\left\{-1;1;-12;12;-2;2;-6;6;-3;3;-4;4\right\}\)
Vậy \(n\in\left\{-1;1;-12;12;-2;2-6;6;-3;3;-4;4\right\}\) là giá trị cần tìm
b) Để phân số \(\dfrac{15}{n-2}\) có giá trị nguyên thì :
\(15⋮n-2\)
\(\Leftrightarrow x-2\inƯ\left(15\right)\)
Tới đây tự lập bảng zồi làm típ!
c) Để phân số \(\dfrac{8}{n+1}\) có giá trị nguyên thì :
\(8⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(8\right)\)
Lập bảng rồi làm nhs!
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2012^2}+\dfrac{1}{2013^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2011.2012}+\dfrac{1}{2012.2013}\)
\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2011}-\dfrac{1}{2012}+\dfrac{1}{2012}-\dfrac{1}{2013}\)
\(=1-\dfrac{1}{2013}\)
\(\Rightarrow A< 1-\dfrac{1}{2013}\)
\(\Rightarrow A< 1\) ( đpcm )
mình gợi ý nè :
Chứng minh A <\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
Ta có:
\(\dfrac{1}{2}\) < 1
\(\dfrac{1}{3}\) < 1
\(\dfrac{1}{4}\) <1
...
\(\dfrac{1}{9}\) < 1
=> \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{9}\) < 1 < 2
Vậy \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{9}\) < 2
Mình nghĩ là sai đó