Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ab+ ba=10a+b+10b+a=11a+11b=11.(a+b) chia hết cho 11
b) aaabbb=aaa000+bbb=aaa.1000+bbb=111.a.1000+111.b=111.(a.1000+b)=3.37.(a.1000+b) chia hết cho 37
1) \(\overline{aaa}=100a+10a+a=111a⋮37^{\left(đpcm\right)}\)
2) \(\overline{ab}+\overline{ba}=10a+b+10b+a=11a+11b=11\left(a+b\right)⋮11^{\left(đpcm\right)}\)
3) \(\overline{aaabbb}=100000a+10000a+1000a+100b+10b+b\)
\(=111000a+111b=111\left(1000a+b\right)⋮37^{\left(đpcm\right)}\)
4) \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9^{\left(đpcm\right)}\)
a) http://olm.vn/hoi-dap/question/16196.html Bạn vào đây nhé !
b) ab = 10a + b
ba = 10b + a
=>ab + ba = 11(a+b) chia het cho 11.
c) aaa = a x 111 = a x 3 x 37
=> aaa luôn chia hết cho 37
d) aaabbb=a000bx111
111 chia hết cho 37 nên aaabbb chia hết cho 37
e) ab=10*a+b
ba=10*b+a
ab-ba=9*a-9*b=9*(a-b)=> ab-ba chia hết cho 9
a) Nếu a và b cùng là số chẵn thì ab﴾a+b﴿chia hết cho 2
nếu a chẵn,b lẻ﴾hoặc a lẻ,b chẵn﴿thì ab ﴾a+b﴿ chia hết cho 2
Nếu a và b cùng lẻ thì ﴾a+b﴿ chẵn nên ﴾a+b﴿chia hết cho 2,vậy ab﴾a+b﴿ chia hết cho 2
Vậy nếu a,b thuộc N thì ab﴾a+b﴿ chia hết cho 2
b) Ta có :ab= 10*a + b
ba = 10*b + a
=> ab + ba = 11(a+b) chia hết cho 11
Vậy ab+ba chia hết cho 11
c)Ta có : aaa= a x 111 = a x 3 x 37 luôn luôn chia hết cho 37
d) aaabbb=aaa000+bbb=111﴾1000a+b﴿=37.3﴾1000a+b﴿ chia hết cho 37
e) ab = 10 . a+b
ba = 10 .b+a ab ‐ ba = 9 . a ‐ 9 . b = 9 . (a ‐ b)
=> ab‐ba chia hết cho 9
Xét với
a;b có 1 trong 2 số lẻ
=> ab chẵn vì trong tích có 1 thừa số chẵn
Và a+b lẻ vì 1 trong 2 số lẻ
=>ab(a+b)
là chẵn.lẻ=chẵn
Mà số chẵn thì chia hết cho 2(ĐPCM)
Với a và b đều lẻ thì a+b chẵn ab lẻ
chẵn.lẻ=chẵn chia hết cho 2(ĐPCM)
Với a và b chẵn thì chắc chắn chia hết cho 2
b,Ta có:
ab+ba=a.10+b+b.10+a=11.(a+b) chia hết cho 11(ĐPCM)
c, Ta có:
aaa=a.100+a.10+a=a.111
Mà 111 chia hết cho 37
=>aaa chia hết cho 37
d, aaabbb=a.100000+a.10000+a.1000+b.100+b.10+b.1
=a.111000+b.111
Mà 111000 chia hết cho 37 và 111 chia hết cho 37
=> aaabbb luôn chia hết cho 37
e, ab-ba=(a.10+b)-(b.10+a)
=a.9-b.9
=9(a-b) chia hết cho 9
=> ab-ba luôn chia hết cho 9
aaabbb : 7
=a.100000+a.10000+a.1000+b.100+b.10+b.1(cũng bằng b thôi)
=a.(100000+10000+1000)+b.(100+10+1)
=a.111000+b.111
=111111ab
=111111:7 thì aaabbb sẽ chi hết cho 7 thôi
aaabbb=aaa000+bbb=111(1000a+b)=37,3(100a+b) chia hết cho 37
tick mlk nha
aaabbb=aaa×1000+bbb=111×(1000a+b)=3×37×(1000a+b)
Vì 37 chia hết cho 37 nên aaabbb chia hết cho 37
Thanks nha nhưng tôi nghĩ thế này : aaabbb = a.100000 + a.10000 + a.1000 + b.100 + b.10 + b.1
aaabbb = a.( 100000 + 10000 + 1000) + b. ( 100 + 10 + 1 )
aaabbb = a.111000 + b.111
aaabbb = a.3000.37 + b.3.37
Vì 37 chia hết cho 37 nên nhân với số nào cũng chia hết cho 37 suy ra aaabbb chia hết cho 37
100000a+10000a+1000a+100b+10b+b
111000:37
111:37
vậy aaabbb:37
aaabbb = aaa000 + bbb
= a.111.1000 + b.111
= a.3.37.1000 + b.3.37
= 37.(a.3.1000 + b.3) ⋮ 37
Ta có: \(\overline{aaabbb}=\overline{aaa000}+\overline{bbb}\)
\(=111a.1000+111b\)
\(=3a.37.1000+3b.37\)
\(=37\left(3a.1000+3b\right)\) chia hết cho 37
Vậy \(\overline{aaabbb}\) chia hết cho 37.