Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Nếu n chẵn => n = 2k (k \(\in\) N) => 2n = 22k = 4k
=> 2n + 3 = 4k + 3 , chia cho 4 dư 3 => 2n + 3 không là số chính phương (Số chính phương chia cho 4 chỉ dư 0 hoặc 1)
+) Nếu n lẻ => n = 2k + 1 (k \(\in\) N* vì n > 1) => 2n + 3 = 22k+1 + 3 = 2.4k + 3 , chia cho 4 dư 3 => 2n + 3 không là số chính phương
Vậy Với mọi n > 1 thì 2n + 3 không là số chính phương
2^n+3 ko phải là số chính phương vì 1 số chính phương chia 2 ko dư 3
n6 - n4 + 2n3 + 2n2
= n2 . (n4 - n2 + 2n +2)
= n2 . [n2(n - 1)(n + 1) + 2(n + 1)]
= n2 . [(n + 1)(n3 - n2 + 2)]
= n2 . (n + 1) . [(n3 + 1) - (n2 - 1)]
= n2. (n + 1)2 . (n2 - 2n + 2)
Với n ∈ N, n > 1 thì n2 - 2n + 2 = (n - 1)2 + 1 > (n - 1)2
Và n2 - 2n + 2 = n2 - 2(n - 1) < n2
Vậy (n - 1)2 < n2 - 2n + 2 < n2
=> n2 - 2n + 2 không phải là một số chính phương.