K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2017

Đặt :

\(A=\frac{1}{2^2}+\frac{1}{3^2}+.........+\frac{1}{100^2}\)

Ta thấy :

\(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

................

\(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Leftrightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+...........+\frac{1}{99.100}\)

\(\Leftrightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.......+\frac{1}{99}-\frac{1}{100}\)

\(\Leftrightarrow A< 1-\frac{1}{100}< 1\)

\(\Leftrightarrow A< 1\)

1 tháng 3 2018

Ta có : 

\(P=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(P< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}< 1\)

Vậy \(P=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)

Chúc bạn học tốt ~

1 tháng 3 2018

bạn nói với cô giáo là :

bài này nhìn là đủ biết không cần phải  chứng minh

tử số bé hơn mẫu số gần trăm lần :)  éo bao giờ > 1 được :)

17 tháng 5 2016

Nhan xet:

\(\frac{1}{2^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

\(\frac{1}{3^2}< \frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)

...

\(\frac{1}{100^2}< \frac{1}{100.101}=\frac{1}{100}-\frac{1}{101}\)

Vay: \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\)

\(P< \frac{1}{2}-\frac{1}{101}=\frac{99}{202}< 1\)

17 tháng 5 2016

1/2^2 < 1/(1.2)= 1-1/2 
1/3^2 <1/(2.3)=1/2-1/3 
1/4^2 <1/(3.4)=1/3-1/4 
...... 
1/100^2 < 1/99-1/100 
cộng vế với vế ta được 1/2^2 +1/3^2+...< 1-1/2+1/2-1/3+....+1/99-1/100=1-1/100 
=> ĐPCM

20 tháng 2 2019

a) 1 + 3 + 32 + 33 + ... + 311

= (1 + 3 + 32 + 33) + ... + (38 + 39 + 310 + 311)

= 40 + ... + 38.(1 + 3 + 32 + 33)

= 40 + ... + 38. 40

= (1 + ... + 38) . 40 \(⋮\)40

20 tháng 2 2019

b) Ta có: B = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) 

        =>    B = \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}\)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

       => B < \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

      => B <\(1-\left(\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{3}-\frac{1}{3}\right)-...-\left(\frac{1}{99}-\frac{1}{99}\right)-\frac{1}{100}\)

     => B < \(1-\frac{1}{100}\)

    => B < 1

27 tháng 4 2018
1/1^2 + 1/2^2 +1/3^2 +.....+1/100^2 nhỏ hơn 1+1/1×2+1/2×3+....+1/99.100= 1+1-1/2+1/2-1/3 +...1...1/99-1/100 suy ra 2 -1/100 nhỏ hơn 2 suy ra đpcm
27 tháng 4 2018

\(\frac{1}{1^2}=1\)

\(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

...

\(\frac{1}{100^2}< \frac{1}{99.100}\)

=> \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1+1-\frac{1}{100}=2-\frac{1}{100}< 2\)

Vậy \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 2\)

22 tháng 4 2021

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

15 tháng 11 2017

Ta có : 

\(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

...................

\(\frac{1}{n^2}< \frac{1}{\left(n-1\right).n}\).

\(\Leftrightarrow\frac{1}{1^2}+\frac{1}{2^2}+....+\frac{1}{n^2}< \frac{1}{1^2}+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{\left(n-1\right).n}\)

\(\Leftrightarrow\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{n^2}< 1+1-\frac{1}{2}+\frac{1}{2}-....+\frac{1}{n-1}-\frac{1}{n}\).

\(\Leftrightarrow\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{n^2}< 2-\frac{1}{n}\)

\(\Rightarrowđpcm\)

15 tháng 11 2017

Gọi vế trái là A. Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}=1-\frac{1}{2};\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3};....;\frac{1}{n^2}< \frac{1}{\left(n-1\right).n}=\frac{1}{n-1}-\frac{1}{n}.\)

=> \(A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)

=> \(A< 2-\frac{1}{n}\) (ĐPCM)

14 tháng 1 2019

\(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)

\(A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right).n}\)

\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{2}+...+\frac{1}{\left(n-1\right)}-\frac{1}{n}\)

\(A< 1-\frac{1}{n}< 1-\frac{1}{2}=\frac{1}{2}< \frac{2}{3}\)

                                         đpcm

19 tháng 1 2019

\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+....+\frac{1}{200^2}< \frac{1}{200^2}+\frac{1}{200^2}+...+\frac{1}{200^2}\left(100\text{số hạng}\right)\)

\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+....+\frac{1}{200^2}< \frac{100}{200^2}< \frac{100}{200}=\frac{1}{2}\)

\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+....+\frac{1}{200^2}< \frac{1}{2}\left(đpcm\right)\)

20 tháng 1 2019

bài tớ sai rồi -_-' chưa lại hộ

\(=\frac{1}{2^2}.\left(\frac{1}{1}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)< \frac{1}{2^2}.\left(\frac{1}{1}+\frac{1}{1.2}+...+\frac{1}{99.100}\right)\)

\(=\frac{1}{2^2}.\left(1+1-\frac{1}{100}\right)=\frac{1}{4}.2-\frac{1}{400}=\frac{1}{2}-\frac{1}{400}< \frac{1}{2}\)