Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có: \(m^3+3m^2+2m+5=m.\left(m^2+3m+2\right)+5\)
\(=m.\left[m.\left(m+1\right)+2.\left(m+1\right)\right]+5\)
\(=m.\left(m+1\right).\left(m+2\right)+5\)
Giả sử \(d\) là ƯCLN của \(m.\left(m+1\right).\left(m+2\right)+5\) và \(m.\left(m+1\right).\left(m+2\right)+6\)
\( \implies\) \(m.\left(m+1\right).\left(m+2\right)+5\) chia hết cho d và \(m.\left(m+1\right).\left(m+2\right)+6\) chia hết cho \(d\)
\( \implies\) \(\left[m.\left(m+1\right).\left(m+2\right)+6\right]-\left[m.\left(m+1\right).\left(m+2\right)+5\right]\) chia hết cho \(d\)
\( \implies\) \(1\) chia hết cho \(d\)
\( \implies\) \(d=1\)
\( \implies\) \(m.\left(m+1\right).\left(m+2\right)+5\) và \(m.\left(m+1\right).\left(m+2\right)+6\) nguyên tố cùng nhau
Vậy \(A\) là phân số tối giản
b)Ta thấy : \(m;m+1;m+2\) là \(3\) số tự nhiên liên tiếp nên nếu \(m\) chia \(3\) dư \(1\) thì \(m+2\) chia hết cho \(3\) ; nếu \(m\) chia \(3\) dư \(2\) thì \(m+1\) chia hết cho \(3\)
Do đó : \(m.\left(m+1\right).\left(m+2\right)\) chia hết cho \(3\) . Mà \(6\) chia hết cho \(3\)
\( \implies\) \(m.\left(m+1\right).\left(m+2\right)+6\) có ước nguyên tố là \(3\)
Vậy \(A\) là số thập phân vô hạn tuần hoàn
a ) \(A=\frac{m^3+3m^2+2m+5}{m\left(m+1\right)\left(m+2\right)+6}=\frac{m\left(m+1\right)\left(m+2\right)+5}{m\left(m+1\right)\left(m+2\right)+6}\)
Vì m(m + 1)(m + 2) + 5 và m(m + 1)(m + 2) + 6 là hai số tự nhiên liên tiếp nên chúng là NT cùng nhau hay A là phân số tối giản
b ) Vì m(m + 1)(m + 2) luôn chia hết cho 3 ( vì là tích 3 số tự nhiên liên tiếp )
6 chia hết cho 3
=> m(m + 1)(m + 2) + 6 chia hết cho 3
Mà theo a ) A là phân số tối giản
\(\Rightarrow A=\frac{m\left(m+1\right)\left(m+2\right)+5}{m\left(m+1\right)\left(m+2\right)+6}\)
là số thập phân vô hạn tuần hoàn
A/ C là phân số tới giản
B C là số thập phân vô hạn tuần hoàn
a) x ( x - 1 ) < 0
\(\Rightarrow\hept{\begin{cases}x< 0\\x-1>0\end{cases}}\) hoặc \(\hept{\begin{cases}x>0\\x-1< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< 0\\x>1\end{cases}}\) ( vô lí ) hoặc \(\hept{\begin{cases}x>0\\x< 1\end{cases}}\)
=> \(\hept{\begin{cases}x>0\\x< 1\end{cases}}\)
=> 0 < x < 1
Vậy 0 < x < 1
b) Lát nghĩ ^^
b) k chắc lắm ( tình bày theo ý hiểu thoii nha )
\(\frac{x^2\left(x-3\right)}{x-9}\le0\)
\(\Rightarrow\) x2 ( x - 3 ) = 0 hoặc \(\hept{\begin{cases}x^2\left(x-3\right)< 0\\x-9>0\end{cases}}\) hoặc \(\hept{\begin{cases}x^2\left(x-3\right)>0\\x-9< 0\end{cases}}\)
Mà \(x^2\ge0\forall x\)
\(\Rightarrow\) x - 3 = 0 hoặc \(\hept{\begin{cases}x-3< 0\\x-9>0\end{cases}}\) hoặc \(\hept{\begin{cases}x-3>0\\x-9< 0\end{cases}}\)
\(\Rightarrow\) x = 3 hoặc \(\hept{\begin{cases}x< 3\\x>9\end{cases}}\) ( vô lí ) hoặc \(\hept{\begin{cases}x>3\\x< 9\end{cases}}\)
\(\Rightarrow3\le x< 9\)
Vậy \(3\le x< 9\)
@@ Học tốt
Chiyuki Fujito
\(=\frac{m^3+3m^3+2m+5}{m^3+3m^3+2m+6}\)
gọi d là UCLN của (m3+3m3+2m+5;m3+3m3+2m+6)
\(\hept{\begin{cases}m^3+3m^3+2m+6⋮d\\m^3+3m^3+2m+5⋮d\end{cases}\Rightarrow d=1}\)
=> p/s trên là p./s tối giản
p/s: tớ làm tắt, bn tự làm thêm vào nhé =))
ukm cảm ơn